Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/24/10.1063/1.4885815
1.
1. W. Zhang, J. L. Loebach, S. R. Wilson, and E. N. Jacobsen, J. Am. Chem. Soc. 112, 2801 (1990).
http://dx.doi.org/10.1021/ja00163a052
2.
2. R. Irie, K. Noda, Y. Ito, N. Matsumoto, and T. Katsuki, Tetrahedron Lett. 31, 7345 (1990).
http://dx.doi.org/10.1016/S0040-4039(00)88562-7
3.
3. E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, and L. Deng, J. Am. Chem. Soc. 113, 7063 (1991).
http://dx.doi.org/10.1021/ja00018a068
4.
4. E. M. McGarrigle and D. G. Gilheany, Chem. Rev. 105, 1563 (2005).
http://dx.doi.org/10.1021/cr0306945
5.
5. C. Linde, B. Åkermark, P.-O. Norrby, and M. Svensson, J. Am. Chem. Soc. 121, 5083 (1999).
http://dx.doi.org/10.1021/ja9809915
6.
6. T. Strassner and K. N. Houk, Org. Lett. 1, 419 (1999).
http://dx.doi.org/10.1021/ol990064i
7.
7. L. Cavallo and H. Jacobsen, Angew. Chem. Int. Ed. 39, 589 (2000);
http://dx.doi.org/10.1002/(SICI)1521-3773(20000204)39:3<589::AID-ANIE589>3.0.CO;2-0
7.L. Cavallo and H. Jacobsen, J. Org. Chem. 68, 6202 (2003);
http://dx.doi.org/10.1021/jo034059a
7.L. Cavallo and H. Jacobsen, J. Phys. Chem. A 107, 5466 (2003);
http://dx.doi.org/10.1021/jp034194r
7.L. Cavallo and H. Jacobsen, Eur. J. Inorg. Chem. 2003, 892;
http://dx.doi.org/10.1002/ejic.200390118
7.L. Cavallo and H. Jacobsen, Inorg. Chem. 43, 2175 (2004);
http://dx.doi.org/10.1021/ic0353615
7.H. Jacobsen and L. Cavallo, Chem. Eur. J. 7, 800 (2001);
http://dx.doi.org/10.1002/1521-3765(20010216)7:4<800::AID-CHEM800>3.0.CO;2-1
7.H. Jacobsen and L. Cavallo, Phys. Chem. Chem. Phys. 6, 3747 (2004).
http://dx.doi.org/10.1039/b402188f
8.
8. I. V. Khavrutskii, D. G. Musaev, and K. Morokuma, Inorg. Chem. 42, 2606 (2003);
http://dx.doi.org/10.1021/ic026094q
8.I. V. Khavrutskii, D. G. Musaev, and K. Morokuma, J. Am. Chem. Soc. 125, 13879 (2003);
http://dx.doi.org/10.1021/ja0343656
8.I. V. Khavrutskii, D. G. Musaev, and K. Morokuma, Proc. Natl. Acad. Sci. U.S.A. 101, 5743 (2004);
http://dx.doi.org/10.1073/pnas.0307082101
8.I. V. Khavrutskii, D. G. Musaev, and K. Morokuma, Inorg. Chem. 44, 306 (2005);
http://dx.doi.org/10.1021/ic0490122
8.I. V. Khavrutskii, R. R. Rahim, D. G. Musaev, and K. Morokuma, J. Phys. Chem. B 108, 3845 (2004).
http://dx.doi.org/10.1021/jp0496912
9.
9. Y. G. Abashkin and S. K. Burt, Org. Lett. 6, 59 (2004).
http://dx.doi.org/10.1021/ol036051t
10.
10. A. Scheurer, H. Maid, F. Hampel, R. W. Saalfrank, L. Toupet, P. Mosset, R. Puchta, and N. J. R. van Eikema Hommes, Eur. J. Org. Chem. 2005, 2566.
http://dx.doi.org/10.1002/ejoc.200500042
11.
11. Y. G. Abashkin, J. R. Collins, and S. K. Burt, Inorg. Chem. 40, 4040 (2001).
http://dx.doi.org/10.1021/ic0012221
12.
12. J. S. Sears and C. D. Sherrill, J. Phys. Chem. A 112, 3466 (2008).
http://dx.doi.org/10.1021/jp711595w
13.
13. T. Takatani, J. S. Sears, and C. D. Sherrill, J. Phys. Chem. A 114, 11714 (2010).
http://dx.doi.org/10.1021/jp1046084
14.
14. J. Ivanic, J. R. Collins, and S. K. Burt, J. Phys. Chem. A 108, 2314 (2004).
http://dx.doi.org/10.1021/jp031214g
15.
15. J. S. Sears and C. D. Sherrill, J. Chem. Phys. 124, 144314 (2006).
http://dx.doi.org/10.1063/1.2187974
16.
16. D. Ma, G. Li Manni, and L. Gagliardi, J. Chem. Phys. 135, 044128 (2011).
http://dx.doi.org/10.1063/1.3611401
17.
17. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).
http://dx.doi.org/10.1007/BF00533485
18.
18. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
19.
19. P.-O. Widmark, P.-A. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77, 291 (1990).
http://dx.doi.org/10.1007/BF01120130
20.
20. M. Reiher and A. Wolf, J. Chem. Phys. 121, 2037 (2004).
http://dx.doi.org/10.1063/1.1768160
21.
21. J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford, WIREs Comput. Mol. Sci. 2, 556 (2012).
http://dx.doi.org/10.1002/wcms.93
22.
22. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. 2, 242 (2012).
http://dx.doi.org/10.1002/wcms.82
23.
23. G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).
http://dx.doi.org/10.1063/1.1449459
24.
24. S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys. Commun. 185, 1501 (2014).
http://dx.doi.org/10.1016/j.cpc.2014.01.019
25.
25. S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
http://dx.doi.org/10.1063/1.478295
26.
26. A. O. Mitrushenkov, G. Fano, F. Ortolani, R. Linguerri, and P. Palmieri, J. Chem. Phys. 115, 6815 (2001).
http://dx.doi.org/10.1063/1.1389475
27.
27. O. Legeza, J. Röder, and B. A. Hess, Phys. Rev. B 67, 125114 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.125114
28.
28. G. Moritz, B. A. Hess, and M. Reiher, J. Chem. Phys. 122, 024107 (2005).
http://dx.doi.org/10.1063/1.1824891
29.
29. D. Zgid and M. Nooijen, J. Chem. Phys. 128, 014107 (2008).
http://dx.doi.org/10.1063/1.2814150
30.
30. Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
http://dx.doi.org/10.1063/1.3152576
31.
31. H.-G. Luo, M.-P. Qin, and T. Xiang, Phys. Rev. B 81, 235129 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235129
32.
32. S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012).
http://dx.doi.org/10.1063/1.3695642
33.
33. S. Wouters, P. A. Limacher, D. Van Neck, and P. W. Ayers, J. Chem. Phys. 136, 134110 (2012).
http://dx.doi.org/10.1063/1.3700087
34.
34. O. Legeza and G. Fáth, Phys. Rev. B 53, 14349 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.14349
35.
35. S. Wouters, CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry, 2014, see https://github.com/SebWouters/CheMPS2.
36.
36.Each spin multiplet in a spin-adapted MPS is represented by only one reduced basis state. This is the reduced to which is referred in the caption of Fig. 2.
37.
37. D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144115 (2008).
http://dx.doi.org/10.1063/1.2883980
38.
38. D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117 (2008).
http://dx.doi.org/10.1063/1.2883976
39.
39. P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74, 2384 (1981).
http://dx.doi.org/10.1063/1.441359
40.
40. D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144116 (2008).
http://dx.doi.org/10.1063/1.2883981
41.
41. T. Yanai, Y. Kurashige, D. Ghosh, and G. K.-L. Chan, Int. J. Quant. Chem. 109, 2178 (2009).
http://dx.doi.org/10.1002/qua.22099
42.
42. G. Moritz and M. Reiher, J. Chem. Phys. 124, 034103 (2006).
http://dx.doi.org/10.1063/1.2139998
43.
43. K. H. Marti, I. M. Ondk, G. Moritz, and M. Reiher, J. Chem. Phys. 128, 014104 (2008).
http://dx.doi.org/10.1063/1.2805383
44.
44. T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys. 132, 024105 (2010).
http://dx.doi.org/10.1063/1.3275806
45.
45. Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011).
http://dx.doi.org/10.1063/1.3629454
46.
46. K. Boguslawski, K. H. Marti, Ö. Legeza, and M. Reiher, J. Chem. Theory Comput. 8, 1970 (2012).
http://dx.doi.org/10.1021/ct300211j
47.
47. K. Boguslawski, P. Tecmer, O. Legeza, and M. Reiher, J. Phys. Chem. Lett. 3, 3129 (2012).
http://dx.doi.org/10.1021/jz301319v
48.
48. Y. Kurashige, G. K.-L. Chan, and T. Yanai, Nat. Chem. 5, 660 (2013).
http://dx.doi.org/10.1038/nchem.1677
49.
49. T. V. Harris, Y. Kurashige, T. Yanai, and K. Morokuma, J. Chem. Phys. 140, 054303 (2014).
http://dx.doi.org/10.1063/1.4863345
50.
50. Y. Kurashige, M. Saitow, J. Chalupsky, and T. Yanai, Phys. Chem. Chem. Phys. 16, 11988 (2014).
http://dx.doi.org/10.1039/c3cp55225j
51.
51. W. H. Dickhoff and D. Van Neck, Many-body Theory Exposed!, 2nd ed. (World Scientific, 2008).
52.
52.Using natural orbitals, and ordering them according to the NOON, is not an optimal choice for DMRG. It is better to group corresponding bonding and antibonding orbitals. However, this procedure allows for an unmonitored optimization.
53.
53. M. Saitow, Y. Kurashige, and T. Yanai, J. Chem. Phys. 139, 044118 (2013).
http://dx.doi.org/10.1063/1.4816627
54.
54. T. Bogaerts, A. Van Yperen-De Deyne, Y.-Y. Liu, F. Lynen, V. Van Speybroeck, and P. Van Der Voort, Chem. Commun. 49, 8021 (2013).
http://dx.doi.org/10.1039/c3cc44473b
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/24/10.1063/1.4885815
Loading
/content/aip/journal/jcp/140/24/10.1063/1.4885815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/24/10.1063/1.4885815
2014-06-30
2016-12-04

Abstract

We use , our free open-source spin-adapted implementation of the density matrix renormalization group (DMRG) [S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys. Commun.185, 1501 (2014)], to study the lowest singlet, triplet, and quintet states of the oxo-Mn(Salen) complex. We describe how an initial approximate DMRG calculation in a large active space around the Fermi level can be used to obtain a good set of starting orbitals for subsequent complete-active-space or DMRG self-consistent field calculations. This procedure mitigates the need for a localization procedure, followed by a manual selection of the active space. Per multiplicity, the same active space of 28 electrons in 22 orbitals (28e, 22o) is obtained with the 6-31G*, cc-pVDZ, and ANO-RCC-VDZP basis sets (the latter with DKH2 scalar relativistic corrections). Our calculations provide new insight into the electronic structure of the quintet.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/24/1.4885815.html;jsessionid=7pW-d2MWu6o2T6ovy00VpBEM.x-aip-live-06?itemId=/content/aip/journal/jcp/140/24/10.1063/1.4885815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/24/10.1063/1.4885815&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/24/10.1063/1.4885815'
Right1,Right2,Right3,