Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. Vattuone, A. Gerbi, D. Cappelletti, F. Pirani, R. Gunnella, L. Savio, and M. Rocca, Angew. Chem., Int. Ed. 48, 4845 (2009).
2. A. Gerbi, L. Savio, L. Vattuone, F. Pirani, D. Cappelletti, and M. Rocca, Angew. Chem., Int. Ed. 45, 6655 (2006).
3. V. Aquilanti, D. Ascenzi, D. Cappelletti, and F. Pirani, Nature (London) 371, 399 (1994);
3.L. Vattuone, L. Savio, F. Pirani, D. Cappelletti, M. Okada, and M. Rocca, Prog. Surf. Sci. 85, 92 (2010).
4. M. Kurahashi and Y. Yamauchi, Phys. Rev. B 85, 161302(R) (2012).
5. M. Kurahashi and Y. Yamauchi, Phys. Rev. Lett. 110, 246102 (2013).
6. M. Kurahashi and Y. Yamauchi, Rev. Sci. Instrum. 80, 083103 (2009).
7. K. Kato, T. Uda, and K. Terakura, Phys. Rev. Lett. 80, 2000 (1998).
8. N. Takahashi, Y. Nakamura, J. Nara, Y. Tateyama, T. Uda, and T. Ohno, Surf. Sci. 602, 768 (2008).
9. T. Engel, Surf. Sci. Rep. 18, 93 (1993);
9.M. L. Yu and L. A. DeLouise, Surf. Sci. Rep. 19, 285 (1994).
10. B. A. Ferguson, C. T. Reeves, and C. B. Mullins, J. Chem. Phys. 110, 11574 (1999);
10.M. Yata, Y. Uesugi-Saitow, M. Kitajima, A. Kubo, and V. E. Korsukov, Phys. Rev. Lett. 91, 206103 (2003);
10.M. Yata, Phys. Rev. B 81, 205402 (2010).
11. L. Österlund, I. Zorić, and B. Kasemo, Phys. Rev. B 55, 15452 (1997).
12. D. A. King and M. G. Wells, Surf. Sci. 29, 454 (1972).
13.The O2 pressure rise at a time when introducing the O2/He beam to the analysis chamber was derived from the mass spectrometer (MS) signals4 of O2 and He. We determined the relative sensitivities of the ion gauge and the MS for pure He and O2 gases, and used them to convert the MS signals to the O2 pressure.
14. R. Kaplan, Surf. Sci. 93, 145 (1980).
15. H. Itoh, S. Narui, Z. Zhang, and T. Ichnokawa, Surf. Sci. 277, L70 (1992).
16.The incidence angle relative to the optical plane of the vicinal surface is +4° or −4° depending on the mounting direction of the wafer, but no difference has been observed in the S0 values. The fact that the difference in S0 between the flat and vicinal surfaces depends on E0 cannot be explained by the incidence angle difference between the two cases. These facts may exclude the possible effect of the reflected beam direction on the S0 measurement.
17. D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).
18. I. M. N. Groot, A. W. Kleyn, and L. B. F. Juurlink, Angew. Chem., Int. Ed. 50, 5174 (2011).
19. M. Dürr, Z. Hu, A. Biedermann, U. Höfer, and T. F. Heinz, Phys. Rev. B 63, 121315(R) (2001).
20. M. B. Raschke, and U. Höfer, Appl. Phys. B 68, 649 (1999);
20.P. Kratzer, E. Pehlke, M. Scheffler, M. B. Raschke, and U. Höfer, Phys. Rev. Lett. 81, 5596 (1998).

Data & Media loading...


Article metrics loading...



A fully alignment-resolved O sticking experiment on a single domain Si(100)-(2×1) surface is presented. This provides the first experimental evidence that the reactivity of O depends on both the polar and azimuthal angles of the molecular axis relative to a surface. It has been found that, in case of side-on collision, an O molecule to the dimer on Si(100) is about 40% more reactive than that parallel to the dimer. Comparison of the O sticking on flat and vicinal Si(100) surfaces indicates that barrierless dissociation channels exist at the double layer step.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd