1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
On the nature of long range electronic coupling in a medium: Distance and orientational dependence for chromophores in molecular aggregates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/4/10.1063/1.4861695
1.
1. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, Amsterdam, The Netherlands, 1982).
2.
2. B. Wieb Van derMeer, G. Coker III, and S.-Y. Chen, Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).
3.
3. D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, New York, 1999).
4.
4. V. May and O. Kühn, Charge and Energy Transfer in Molecular Systems (Wiley-VCH, New York, 2011).
5.
5. D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach,” Eur. J. Phys. 25, 845858 (2004).
http://dx.doi.org/10.1088/0143-0807/25/6/017
6.
6.See, for example, S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
7.
7. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to the Quantized Limit (Cambridge University Press, Cambridge, 2010).
8.
8. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437, 5575 (1948).
http://dx.doi.org/10.1002/andp.19484370105
9.
9. S. F. Kilin and I. M. Rozman, “Effect of reabsorption on the fluorescence lifetimes of organic substances,” Opt. Spectrosc. 6, 4044 (1959).
10.
10. J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. 88, 18 (1966).
http://dx.doi.org/10.1088/0370-1328/88/1/302
11.
11. D. L. Andrews and B. S. Sherborne, “Resonant excitation transfer: A quantum electrodynamical study,” J. Chem. Phys. 86, 40114017 (1987).
http://dx.doi.org/10.1063/1.451910
12.
12. D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195201 (1989).
http://dx.doi.org/10.1016/0301-0104(89)87019-3
13.
13. G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: The unified theory revisited,” J. Chem. Phys. 119, 22642274 (2003).
http://dx.doi.org/10.1063/1.1579677
14.
14. G. Juzeliūnas and D. L. Andrews, “Quantum electrodynamics of resonance energy transfer,” Adv. Chem. Phys. 112, 357410 (2000).
http://dx.doi.org/10.1002/9780470141717.ch4
15.
15. K. Bernhardt and H.-W. Trissl, “Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally?,” Biochim. Biophys. Acta 1409, 125142 (1999).
http://dx.doi.org/10.1016/S0005-2728(98)00149-2
16.
16. J. Strümpfer, M. Şener, and K. Schulten, “How quantum coherence assists photosynthetic light harvesting,” J. Phys. Chem. Lett. 3, 536542 (2012).
http://dx.doi.org/10.1021/jz201459c
17.
17. Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, and A. V. Nurmikko, “Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures,” Nat. Nanotechnol. 2, 555559 (2007).
http://dx.doi.org/10.1038/nnano.2007.253
18.
18. J. E. Halpert, J. R. Tischler, G. Nair, B. J. Walker, W. H. Liu, V. Bulovic, and M. G. Bawendi, “Electrostatic formation of quantum dot/J-aggregate FRET pairs in solution,” J. Phys. Chem. C 113, 99869992 (2009).
http://dx.doi.org/10.1021/jp8099169
19.
19. Y. Shirasaki, P. O. Anikeeva, J. R. Tischler, M. S. Bradley, and V. Bulovic, “Efficient Forster energy transfer from phosphorescent organic molecules to J-aggregate thin films,” Chem. Phys. Lett. 485, 243246 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.12.017
20.
20. L. A. Cury, K. N. Bourdakos, D. Dai, F. B. Dias, and A. P. Monkman, “Long range energy transfer in conjugated polymer sequential bilayers,” J. Chem. Phys. 134, 104903 (2011).
http://dx.doi.org/10.1063/1.3560164
21.
21. S. Valleau, S. K. Saikin, M.-H. Yung, and A. A. Guzik, “Exciton transport in thin-film cyanine dye J-aggregates,” J. Chem. Phys. 137, 034109 (2012).
http://dx.doi.org/10.1063/1.4732122
22.
22. G. de Miguel, M. Ziolek, M. Zitnan, J. A. Organero, S. S. Pandey, S. Hayase, and A. Douhal, “Photophysics of H- and J-aggregates of indole-based squaraines in solid state,” J. Phys. Chem. C 116, 93799389 (2012).
http://dx.doi.org/10.1021/jp210281z
23.
23. D. Melnika, D. Savateeva, V. Lesnyak, N. Gaponik, Y. N. Fernandez, M. I. Vasilevskiy, M. F. Costa, K. E. Mochalov, V. Oleinikov, and Y. P. Rakovich, “Resonance energy transfer in self-organized organic/inorganic dendrite structures,” Nanoscale 5, 93179323 (2013).
http://dx.doi.org/10.1039/c3nr03016d
24.
24. A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2013), p. 22.
25.
25. D. P. Craig and T. Thirunamachandran, Molecular Quantum Dynamics (Academic Press, London, 1984).
26.
26. J. A. Heras, “A short proof that the Coulomb-gauge potentials yield the retarded fields,” Eur. J. Phys. 32, 213216 (2011).
http://dx.doi.org/10.1088/0143-0807/32/1/020
27.
27. S. M. Barnett, R. P. Cameron, and A. M. Yao, “Duplex symmetry and its relation to the conservation of optical helicity,” Phys. Rev. A 86, 013845 (2012).
http://dx.doi.org/10.1103/PhysRevA.86.013845
28.
28. E. M. Rice, D. S. Bradshaw, K. Saadi, and D. L. Andrews, “Identifying the development in phase and amplitude of dipole and multipole radiation,” Eur. J. Phys. 33, 345358 (2012).
http://dx.doi.org/10.1088/0143-0807/33/2/345
29.
29. A. Salam, “Mediation of resonance energy transfer by a third molecule,” J. Chem. Phys. 136, 014509 (2012).
http://dx.doi.org/10.1063/1.3673779
30.
30. D. L. Andrews and J. S. Ford, “Resonance energy transfer: Influence of neighboring matter absorbing in the wavelength region of the acceptor,” J. Chem. Phys. 139, 014107 (2013).
http://dx.doi.org/10.1063/1.4811793
31.
31. G. J. Daniels and D. L. Andrews, J. Chem. Phys. 117, 68826893 (2002).
http://dx.doi.org/10.1063/1.1507641
32.
32. T. Wakamatsu and S. Odauchi, “Thermal-changeable complex-refractive-index spectra of merocyanine aggregate films,” Appl. Opt. 42, 69296933 (2003).
http://dx.doi.org/10.1364/AO.42.006929
33.
33. D. J. Segelstein, “The complex refractive index of water,” Thesis, University of Missouri-Kansas, USA, 1981.
34.
34. D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: Mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
http://dx.doi.org/10.1063/1.2894319
35.
35. D. S. Bradshaw and D. L. Andrews, “All-optical switching based on controlled energy transfer between nanoparticles in film arrays,” J. Nanophoton. 3, 031503 (2009).
http://dx.doi.org/10.1117/1.3079796
36.
36. T. Meier, Y. Zhao, V. Chernyak, and S. Mukamel, “Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes,” J. Chem. Phys. 107, 38763893 (1997).
http://dx.doi.org/10.1063/1.474746
37.
37. O. Kuhn and V. Sundstrom, “Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach,” J. Chem. Phys. 107, 41544164 (1997).
http://dx.doi.org/10.1063/1.474803
38.
38. A. Acocella, G. A. Jones, and F. Zerbetto, “What is adenine doing in photolyase?,” J. Phys. Chem. B 114, 41014106 (2010).
http://dx.doi.org/10.1021/jp101093z
39.
39. A. Ishizaki and G. R. Fleming, “On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes,” J. Phys. Chem. B 115, 62276233 (2011).
http://dx.doi.org/10.1021/jp112406h
40.
40. N. Singh and P. Brumer, “Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics,” Faraday Discuss. 153, 4150 (2011).
http://dx.doi.org/10.1039/c1fd00038a
41.
41. J. M. Jean, C.-K. Chan, G. R. Fleming, and T. G. Owens, “Excitation transport and trapping on spectrally disordered lattices,” Biophys. J. 56, 12031215 (1989).
http://dx.doi.org/10.1016/S0006-3495(89)82767-5
42.
42. E. K. L. Yeow, K. P. Ghiggino, J. N. H. Reek, M. J. Crossley, A. W. Bosman, A. P. H. J. Schenning, and E. W. Meijer, “The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy,” J. Phys. Chem. B 104, 25962606 (2000).
http://dx.doi.org/10.1021/jp993116u
43.
43. M. Bednarz, V. A. Malyshev, and J. Knoester, “Intraband relaxation and temperature dependence of the fluorescence decay time of one-dimensional Frenkel excitons: The Pauli master equation approach,” J. Chem. Phys. 117, 62006213 (2002).
http://dx.doi.org/10.1063/1.1499483
44.
44. M. Yang, A. Damjanović, H. M. Vaswani, and G. R. Fleming, “Energy transfer in photosystem I of Cyanobacteria Synechococcus elongates: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density,” Biophys. J. 85, 140158 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74461-0
45.
45. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd ed. (Wiley-VCH, Weinheim, 2013).
46.
46. L. Stryer and R. P. Haugland, “Energy transfer: A spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58, 719726 (1967).
http://dx.doi.org/10.1073/pnas.58.2.719
47.
47. T.-S. Ahn, N. Wright, and C. J. Bardeen, “The effects of orientational and energetic disorder on Forster energy migration along a one-dimensional lattice,” Chem. Phys. Lett. 446, 4348 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.003
48.
48. J. S. Briggs and A. Eisfeld, “Equivalence of quantum and classical coherence in electronic energy transfer,” Phys. Rev. E 83, 051911 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.051911
49.
49. O. I. Micic, K. M. Jones, A. Cahill, and A. J. Nozik, “Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots,” J. Phys. Chem. B 102, 97919796 (1998).
http://dx.doi.org/10.1021/jp981703u
50.
50. R. Koole, P. Liljeroth, C. M. Donega, D. Vanmaekalbergh, and A. Meijerink, “Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules,” J. Am. Chem. Soc. 128, 1043610441 (2006).
http://dx.doi.org/10.1021/ja061608w
51.
51. N. Zaitseva, Z. R. Dai, F. R. Leon, and D. Korl, “Optical properties of CdSe superlattices,” J. Am. Chem. Soc. 127, 1022110226 (2005).
http://dx.doi.org/10.1021/ja051069f
52.
52. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B 110, 83078313 (2006).
http://dx.doi.org/10.1021/jp054129c
53.
53. D. B. VanBeek, M. C. Zwier, J. M. Shorb, and B. P. Krueger, “Fretting about FRET: Correlation between K and R,” Biophys. J. 92, 41684178 (2007).
http://dx.doi.org/10.1529/biophysj.106.092650
54.
54. T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
http://dx.doi.org/10.1063/1.2762283
55.
55. R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126, 234701 (2007).
http://dx.doi.org/10.1063/1.2735584
56.
56. A. Munoz-Losa, C. Curutchet, B. P. Krueger, L. R. Hartsell, and B. Mennucci, “Fretting about FRET: Failure of the ideal dipole approximation,” Biophys. J. 96, 47794788 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.03.052
57.
57. S. V. Koushik, P. S. Blank, and S. S. Vogel, “Anomalous surplus energy transfer observed with multiple FRET acceptors,” PloS ONE 4, e8031 (2009).
http://dx.doi.org/10.1371/journal.pone.0008031
58.
58. S. Chatterjee, J. B. Lee, N. V. Valappil, D. Luo, and V. M. Menon, “Investigating the distance limit of a metal nanoparticle based spectroscopic ruler,” Biomed. Opt. Express 2, 17271733 (2011).
http://dx.doi.org/10.1364/BOE.2.001727
59.
59. W. R. Algar, M. G. Ancona, A. P. Malanoski, K. Susumu, and I. L. Medintz, “Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: Characterization and application to multiplexed protease sensing,” ACS Nano 12, 1104411058 (2012).
60.
60. J. R. Walker, “FRETting over the spectroscopic ruler,” Science 339, 15301531 (2013).
http://dx.doi.org/10.1126/science.1235761
61.
61. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763774 (2011).
http://dx.doi.org/10.1038/nchem.1145
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4861695
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4861695
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4861695
2014-01-23
2014-09-23

Abstract

The electronic coupling that mediates energy transfer in molecular aggregates is theoretically investigated using the principles of (QED). In this context, both the electromagnetic tensor and rate equation relating to these couplings are re-examined with a focus on the role of the relative distance and orientation of transition dipole moment pairs, considering near-, intermediate-, and far-zone contributions to the coupling. The QED based coupling terms are investigated both analytically and numerically, and they are physically interpreted in terms of the character of the mediating (virtual) photons. The spatial dependence of the couplings for a two-dimensional molecular aggregate of ordered and isotropic transition dipole moments is numerically calculated. Further, are employed for a one-dimensional chain of molecules and donor-acceptor pairs, to investigate the importance of intermediate- and far-zone contributions to the electronic coupling on electronic energy transfer dynamics. The results indicate that although Förster theory is often qualitatively and quantitatively correct for describing electronic energy transfer (EET) processes, intermediate- and far-zone coupling terms could sometimes be non-negligible for correctly describing EET in natural and artificial, mesoscopic, solar energy harvesting systems. In particular, the results indicate that these terms are non-negligible when using Förster resonance energy transfer spectroscopic ruler techniques for distances >10 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4861695.html;jsessionid=a613sor412et6.x-aip-live-03?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4861695&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On the nature of long range electronic coupling in a medium: Distance and orientational dependence for chromophores in molecular aggregates
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4861695
10.1063/1.4861695
SEARCH_EXPAND_ITEM