Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, Amsterdam, The Netherlands, 1982).
2. B. Wieb Van derMeer, G. Coker III, and S.-Y. Chen, Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).
3. D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley, New York, 1999).
4. V. May and O. Kühn, Charge and Energy Transfer in Molecular Systems (Wiley-VCH, New York, 2011).
5. D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach,” Eur. J. Phys. 25, 845858 (2004).
6.See, for example, S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
7. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to the Quantized Limit (Cambridge University Press, Cambridge, 2010).
8. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437, 5575 (1948).
9. S. F. Kilin and I. M. Rozman, “Effect of reabsorption on the fluorescence lifetimes of organic substances,” Opt. Spectrosc. 6, 4044 (1959).
10. J. S. Avery, “Resonance energy transfer and spontaneous photon emission,” Proc. Phys. Soc. 88, 18 (1966).
11. D. L. Andrews and B. S. Sherborne, “Resonant excitation transfer: A quantum electrodynamical study,” J. Chem. Phys. 86, 40114017 (1987).
12. D. L. Andrews, “A unified theory of radiative and radiationless molecular energy transfer,” Chem. Phys. 135, 195201 (1989).
13. G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Resonance energy transfer: The unified theory revisited,” J. Chem. Phys. 119, 22642274 (2003).
14. G. Juzeliūnas and D. L. Andrews, “Quantum electrodynamics of resonance energy transfer,” Adv. Chem. Phys. 112, 357410 (2000).
15. K. Bernhardt and H.-W. Trissl, “Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally?,” Biochim. Biophys. Acta 1409, 125142 (1999).
16. J. Strümpfer, M. Şener, and K. Schulten, “How quantum coherence assists photosynthetic light harvesting,” J. Phys. Chem. Lett. 3, 536542 (2012).
17. Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, and A. V. Nurmikko, “Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures,” Nat. Nanotechnol. 2, 555559 (2007).
18. J. E. Halpert, J. R. Tischler, G. Nair, B. J. Walker, W. H. Liu, V. Bulovic, and M. G. Bawendi, “Electrostatic formation of quantum dot/J-aggregate FRET pairs in solution,” J. Phys. Chem. C 113, 99869992 (2009).
19. Y. Shirasaki, P. O. Anikeeva, J. R. Tischler, M. S. Bradley, and V. Bulovic, “Efficient Forster energy transfer from phosphorescent organic molecules to J-aggregate thin films,” Chem. Phys. Lett. 485, 243246 (2010).
20. L. A. Cury, K. N. Bourdakos, D. Dai, F. B. Dias, and A. P. Monkman, “Long range energy transfer in conjugated polymer sequential bilayers,” J. Chem. Phys. 134, 104903 (2011).
21. S. Valleau, S. K. Saikin, M.-H. Yung, and A. A. Guzik, “Exciton transport in thin-film cyanine dye J-aggregates,” J. Chem. Phys. 137, 034109 (2012).
22. G. de Miguel, M. Ziolek, M. Zitnan, J. A. Organero, S. S. Pandey, S. Hayase, and A. Douhal, “Photophysics of H- and J-aggregates of indole-based squaraines in solid state,” J. Phys. Chem. C 116, 93799389 (2012).
23. D. Melnika, D. Savateeva, V. Lesnyak, N. Gaponik, Y. N. Fernandez, M. I. Vasilevskiy, M. F. Costa, K. E. Mochalov, V. Oleinikov, and Y. P. Rakovich, “Resonance energy transfer in self-organized organic/inorganic dendrite structures,” Nanoscale 5, 93179323 (2013).
24. A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2013), p. 22.
25. D. P. Craig and T. Thirunamachandran, Molecular Quantum Dynamics (Academic Press, London, 1984).
26. J. A. Heras, “A short proof that the Coulomb-gauge potentials yield the retarded fields,” Eur. J. Phys. 32, 213216 (2011).
27. S. M. Barnett, R. P. Cameron, and A. M. Yao, “Duplex symmetry and its relation to the conservation of optical helicity,” Phys. Rev. A 86, 013845 (2012).
28. E. M. Rice, D. S. Bradshaw, K. Saadi, and D. L. Andrews, “Identifying the development in phase and amplitude of dipole and multipole radiation,” Eur. J. Phys. 33, 345358 (2012).
29. A. Salam, “Mediation of resonance energy transfer by a third molecule,” J. Chem. Phys. 136, 014509 (2012).
30. D. L. Andrews and J. S. Ford, “Resonance energy transfer: Influence of neighboring matter absorbing in the wavelength region of the acceptor,” J. Chem. Phys. 139, 014107 (2013).
31. G. J. Daniels and D. L. Andrews, J. Chem. Phys. 117, 68826893 (2002).
32. T. Wakamatsu and S. Odauchi, “Thermal-changeable complex-refractive-index spectra of merocyanine aggregate films,” Appl. Opt. 42, 69296933 (2003).
33. D. J. Segelstein, “The complex refractive index of water,” Thesis, University of Missouri-Kansas, USA, 1981.
34. D. S. Bradshaw and D. L. Andrews, “Optically controlled resonance energy transfer: Mechanism and configuration for all-optical switching,” J. Chem. Phys. 128, 144506 (2008).
35. D. S. Bradshaw and D. L. Andrews, “All-optical switching based on controlled energy transfer between nanoparticles in film arrays,” J. Nanophoton. 3, 031503 (2009).
36. T. Meier, Y. Zhao, V. Chernyak, and S. Mukamel, “Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes,” J. Chem. Phys. 107, 38763893 (1997).
37. O. Kuhn and V. Sundstrom, “Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach,” J. Chem. Phys. 107, 41544164 (1997).
38. A. Acocella, G. A. Jones, and F. Zerbetto, “What is adenine doing in photolyase?,” J. Phys. Chem. B 114, 41014106 (2010).
39. A. Ishizaki and G. R. Fleming, “On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes,” J. Phys. Chem. B 115, 62276233 (2011).
40. N. Singh and P. Brumer, “Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics,” Faraday Discuss. 153, 4150 (2011).
41. J. M. Jean, C.-K. Chan, G. R. Fleming, and T. G. Owens, “Excitation transport and trapping on spectrally disordered lattices,” Biophys. J. 56, 12031215 (1989).
42. E. K. L. Yeow, K. P. Ghiggino, J. N. H. Reek, M. J. Crossley, A. W. Bosman, A. P. H. J. Schenning, and E. W. Meijer, “The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy,” J. Phys. Chem. B 104, 25962606 (2000).
43. M. Bednarz, V. A. Malyshev, and J. Knoester, “Intraband relaxation and temperature dependence of the fluorescence decay time of one-dimensional Frenkel excitons: The Pauli master equation approach,” J. Chem. Phys. 117, 62006213 (2002).
44. M. Yang, A. Damjanović, H. M. Vaswani, and G. R. Fleming, “Energy transfer in photosystem I of Cyanobacteria Synechococcus elongates: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density,” Biophys. J. 85, 140158 (2003).
45. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd ed. (Wiley-VCH, Weinheim, 2013).
46. L. Stryer and R. P. Haugland, “Energy transfer: A spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58, 719726 (1967).
47. T.-S. Ahn, N. Wright, and C. J. Bardeen, “The effects of orientational and energetic disorder on Forster energy migration along a one-dimensional lattice,” Chem. Phys. Lett. 446, 4348 (2007).
48. J. S. Briggs and A. Eisfeld, “Equivalence of quantum and classical coherence in electronic energy transfer,” Phys. Rev. E 83, 051911 (2011).
49. O. I. Micic, K. M. Jones, A. Cahill, and A. J. Nozik, “Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots,” J. Phys. Chem. B 102, 97919796 (1998).
50. R. Koole, P. Liljeroth, C. M. Donega, D. Vanmaekalbergh, and A. Meijerink, “Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules,” J. Am. Chem. Soc. 128, 1043610441 (2006).
51. N. Zaitseva, Z. R. Dai, F. R. Leon, and D. Korl, “Optical properties of CdSe superlattices,” J. Am. Chem. Soc. 127, 1022110226 (2005).
52. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, “Surface plasmon-quantum dot coupling from arrays of nanoholes,” J. Phys. Chem. B 110, 83078313 (2006).
53. D. B. VanBeek, M. C. Zwier, J. M. Shorb, and B. P. Krueger, “Fretting about FRET: Correlation between K and R,” Biophys. J. 92, 41684178 (2007).
54. T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
55. R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle,” J. Chem. Phys. 126, 234701 (2007).
56. A. Munoz-Losa, C. Curutchet, B. P. Krueger, L. R. Hartsell, and B. Mennucci, “Fretting about FRET: Failure of the ideal dipole approximation,” Biophys. J. 96, 47794788 (2009).
57. S. V. Koushik, P. S. Blank, and S. S. Vogel, “Anomalous surplus energy transfer observed with multiple FRET acceptors,” PloS ONE 4, e8031 (2009).
58. S. Chatterjee, J. B. Lee, N. V. Valappil, D. Luo, and V. M. Menon, “Investigating the distance limit of a metal nanoparticle based spectroscopic ruler,” Biomed. Opt. Express 2, 17271733 (2011).
59. W. R. Algar, M. G. Ancona, A. P. Malanoski, K. Susumu, and I. L. Medintz, “Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: Characterization and application to multiplexed protease sensing,” ACS Nano 12, 1104411058 (2012).
60. J. R. Walker, “FRETting over the spectroscopic ruler,” Science 339, 15301531 (2013).
61. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting,” Nat. Chem. 3, 763774 (2011).

Data & Media loading...


Article metrics loading...



The electronic coupling that mediates energy transfer in molecular aggregates is theoretically investigated using the principles of (QED). In this context, both the electromagnetic tensor and rate equation relating to these couplings are re-examined with a focus on the role of the relative distance and orientation of transition dipole moment pairs, considering near-, intermediate-, and far-zone contributions to the coupling. The QED based coupling terms are investigated both analytically and numerically, and they are physically interpreted in terms of the character of the mediating (virtual) photons. The spatial dependence of the couplings for a two-dimensional molecular aggregate of ordered and isotropic transition dipole moments is numerically calculated. Further, are employed for a one-dimensional chain of molecules and donor-acceptor pairs, to investigate the importance of intermediate- and far-zone contributions to the electronic coupling on electronic energy transfer dynamics. The results indicate that although Förster theory is often qualitatively and quantitatively correct for describing electronic energy transfer (EET) processes, intermediate- and far-zone coupling terms could sometimes be non-negligible for correctly describing EET in natural and artificial, mesoscopic, solar energy harvesting systems. In particular, the results indicate that these terms are non-negligible when using Förster resonance energy transfer spectroscopic ruler techniques for distances >10 nm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd