Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/4/10.1063/1.4861893
1.
1. S. Basu, A. K. Agrawal, and M. Jassal, J. Appl. Polym. Sci. 122, 856 (2011).
http://dx.doi.org/10.1002/app.34083
2.
2. Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, and M. Rubinstein, Nat. Mater. 6, 609 (2007).
http://dx.doi.org/10.1038/nmat1954
3.
3. M. Senthil Kumar, T. H. Kim, S. H. Lee, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, Chem. Phys. Lett. 383, 235 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.11.032
4.
4. Y. Zhao, K. Dong, X. Liu, S. Zhang, J. Zhu, and J. Wang, Mol. Simul. 38, 172 (2012).
http://dx.doi.org/10.1080/08927022.2011.610894
5.
5. C. Yang, Z. Jia, Z. Guan, and L. Wang, J. Power Sources 189, 716 (2009).
http://dx.doi.org/10.1016/j.jpowsour.2008.08.060
6.
6. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci., Part B: Polym. Phys. 40, 2259 (2002).
http://dx.doi.org/10.1002/polb.10293
7.
7. L. Lu, D. Wu, M. Zhang, and W. Zhou, Ind. Eng. Chem. Res. 51, 3682 (2012).
http://dx.doi.org/10.1021/ie2028969
8.
8. M. Chalaris and J. Samios, J. Chem. Phys. 112, 8581 (2000).
http://dx.doi.org/10.1063/1.481460
9.
9. W. L. Jorgensen and C. J. Swenson, J. Am. Chem. Soc. 107, 569 (1985).
http://dx.doi.org/10.1021/ja00289a008
10.
10. J. W. Essex and W. L. Jorgensen, J. Phys. Chem. 99, 17956 (1995).
http://dx.doi.org/10.1021/j100051a021
11.
11. H. Torii, M. G. Giorgini, and M. Musso, J. Phys. Chem. B 116, 353 (2012).
http://dx.doi.org/10.1021/jp209119e
12.
12. M. Chalaris and J. Samios, J. Mol. Liq. 78, 201 (1998).
http://dx.doi.org/10.1016/S0167-7322(98)00092-0
13.
13. M. Chalaris, A. Koufou, and J. Samios, J. Mol. Liq. 101, 69 (2002).
http://dx.doi.org/10.1016/S0167-7322(02)00103-4
14.
14. Y. P. Puhovski, L. P. Safonova, and B. M. Rode, J. Mol. Liq. 103–104, 15 (2003).
http://dx.doi.org/10.1016/S0167-7322(02)00125-3
15.
15. A. K. Baev, Specific Intermolecular Interactions of Organic Compounds (Springer-Verlag, Berlin, 2012), p. 29.
16.
16. C. L. Pai, M. C. Boyce, and G. C. Rutledge, Macromolecules 42, 2102 (2009).
http://dx.doi.org/10.1021/ma802529h
17.
17. J. C. Chen and I. R. Harrison, Carbon 40, 25 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00050-1
18.
18. M. Umadevi and R. R. Poornima, Spectrochim. Acta, Part A 73, 815 (2009).
http://dx.doi.org/10.1016/j.saa.2009.04.003
19.
19. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
20.
20. Y. Lei, H. Li, H. Pan, and S. Han, J. Phys. Chem. A 107, 1574 (2003).
http://dx.doi.org/10.1021/jp026638+
21.
21. G.-Z. Jia, K.-M. Huang, L.-J. Yang, and X.-Q. Yang, Int. J. Mol. Sci. 10, 1590 (2009).
http://dx.doi.org/10.3390/ijms10041590
22.
22. S. Rick and S. Stuart, in Reviews in Computational Chemistry, edited by K. Lipkowitz, and D. Boyd (John Wiley & Sons, Inc., 2002), Vol. 18, p. 89.
23.
23. P. E. M. Lopes, B. Roux, and J. A. D. MacKerell, Theor. Chem. Acc. 124, 11 (2009).
http://dx.doi.org/10.1007/s00214-009-0617-x
24.
24. A. D. Mackerell, J. Comput. Chem. 25, 1584 (2004).
http://dx.doi.org/10.1002/jcc.20082
25.
25. G. Maroulis, in Atoms, Molecules, and Clusters in Electric Fields: Theoretical Approaches to the Calculation of Electric Polarizability, Computational, Numerical, and Mathematical Methods in Sciences and Engineering Vol. 1 (Imperial College Press, London, 2006), pp. 132.
26.
26. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
27.
27. L. X. Dang, J. Phys. Chem. B 102, 620 (1998).
http://dx.doi.org/10.1021/jp9731258
28.
28. D. N. Bernardo, Y. Ding, K. Krogh-Jespersen, and R. M. Levy, J. Phys. Chem. 98, 4180 (1994).
http://dx.doi.org/10.1021/j100066a043
29.
29. A. Wallqvist and B. J. Berne, Chem. Phys. Lett. 117, 214 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80206-2
30.
30. J. W. Caldwell and P. A. Kollman, J. Phys. Chem. 99, 6208 (1995).
http://dx.doi.org/10.1021/j100016a067
31.
31. M. Sprik, J. Phys. Chem. 95, 2283 (1991).
http://dx.doi.org/10.1021/j100159a034
32.
32. R. A. Bryce, M. A. Vincent, N. O. J. Malcolm, I. H. Hillier, and N. A. Burton, J. Chem. Phys. 109, 3077 (1998).
http://dx.doi.org/10.1063/1.476900
33.
33. S. W. Rick and B. J. Berne, J. Am. Chem. Soc. 118, 672 (1996).
http://dx.doi.org/10.1021/ja952535b
34.
34. S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101, 6141 (1994).
http://dx.doi.org/10.1063/1.468398
35.
35. S. Patel, A. D. Mackerell Jr., and C. L. Brooks III, J. Comput. Chem. 25, 1504 (2004).
http://dx.doi.org/10.1002/jcc.20077
36.
36. L. R. Pratt, Mol. Phys. 40, 347 (1980).
http://dx.doi.org/10.1080/00268978000101531
37.
37. B. G. Dick Jr., and A. W. Overhauser, Phys. Rev. 112, 90 (1958).
http://dx.doi.org/10.1103/PhysRev.112.90
38.
38. J. Applequist, J. R. Carl, and K.-K. Fung, J. Am. Chem. Soc. 94, 2952 (1972).
http://dx.doi.org/10.1021/ja00764a010
39.
39. S. Brdarski, P.-O. Åstrand, and G. Karlström, Theor. Chem. Acc. 105, 7 (2000).
http://dx.doi.org/10.1007/s002140000180
40.
40. J. Gao, J. J. Pavelites, and D. Habibollazadeh, J. Phys. Chem. 100, 2689 (1996).
http://dx.doi.org/10.1021/jp9521969
41.
41. W. Xie, J. Pu, A. D. Mackerell, and J. Gao, J. Chem. Theory Comput. 3, 1878 (2007).
http://dx.doi.org/10.1021/ct700146x
42.
42. J. W. Ponder and D. Case, Adv. Protein Chem. 66, 27 (2003).
http://dx.doi.org/10.1016/S0065-3233(03)66002-X
43.
43. P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).
http://dx.doi.org/10.1021/jp027815+
44.
44. J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
http://dx.doi.org/10.1021/jp910674d
45.
45. Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Ponder, and P. Ren, J. Chem. Theory Comput. 9, 4046 (2013).
http://dx.doi.org/10.1021/ct4003702
46.
46. P. Ren, C. Wu, and J. W. Ponder, J. Chem. Theory Comput. 7, 3143 (2011).
http://dx.doi.org/10.1021/ct200304d
47.
47. J. Wang, P. Cieplak, J. Li, J. Wang, Q. Cai, M. Hsieh, H. Lei, R. Luo, and Y. Duan, J. Phys. Chem. B 115, 3100 (2011).
http://dx.doi.org/10.1021/jp1121382
48.
48. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2000), p. 1 CD.
49.
49. A. J. Stone and M. Alderton, Mol. Phys. 56, 1047 (1985).
http://dx.doi.org/10.1080/00268978500102891
50.
50. J. C. Wu, G. Chattree, and P. Ren, Theor. Chem. Acc. 131, 1138 (2012).
http://dx.doi.org/10.1007/s00214-012-1138-6
51.
51. B. T. Thole, Chem. Phys. 59, 341 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85176-2
52.
52. D. Jiao, C. King, A. Grossfield, T. A. Darden, and P. Ren, J. Phys. Chem. B 110, 18553 (2006).
http://dx.doi.org/10.1021/jp062230r
53.
53. D. Semrouni, W. C. Isley, C. Clavaguéra, J.-P. Dognon, C. J. Cramer, and L. Gagliardi, J. Chem. Theory Comput. 9, 3062 (2013).
http://dx.doi.org/10.1021/ct400237r
54.
54. J. W. Ponder and F. M. Richards, J. Comput. Chem. 8, 1016 (1987).
http://dx.doi.org/10.1002/jcc.540080710
55.
55. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
56.
56. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
57.
57. H. J. C. Berendsen, J. P. M. Postma, W. F. v. Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
58.
58. L. Verlet, Phys. Rev. 159, 98 (1967).
http://dx.doi.org/10.1103/PhysRev.159.98
59.
59. U. C. Singh and P. A. Kollman, J. Comput. Chem. 5, 129 (1984).
http://dx.doi.org/10.1002/jcc.540050204
60.
60. B. H. Besler, K. M. Merz, and P. A. Kollman, J. Comput. Chem. 11, 431 (1990).
http://dx.doi.org/10.1002/jcc.540110404
61.
61. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, CT, 2009).
62.
62. R. Konrat and H. Sterk, J. Phys. Chem. 94, 1291 (1990).
http://dx.doi.org/10.1021/j100367a017
63.
63. R. Vargas, J. Garza, R. A. Friesner, H. Stern, B. P. Hay, and D. A. Dixon, J. Phys. Chem. A 105, 4963 (2001).
http://dx.doi.org/10.1021/jp003888m
64.
64. G. Mamantov and A. I. Popov, Chemistry of Nonaqueous Solutions: Current Progress (VCH, New York, NY, 1994), p. 307.
65.
65. T. A. Halgren, J. Am. Chem. Soc. 114, 7827 (1992).
http://dx.doi.org/10.1021/ja00046a032
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4861893
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4861893
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4861893
2014-01-23
2016-09-27

Abstract

The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4861893.html;jsessionid=aukHGdEtuxQrLHb9vn1qGyqW.x-aip-live-03?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4861893&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/4/10.1063/1.4861893&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/4/10.1063/1.4861893'
Right1,Right2,Right3,