1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Crystal structure prediction at high pressures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/4/10.1063/1.4861966
1.
1. F. Bundy, J. Chem. Phys. 38, 631 (1963).
http://dx.doi.org/10.1063/1.1733716
2.
2. K. Chang, M. M. Dacorogna, M. L. Cohen, J. Mignot, G. Chouteau, and G. Martinez, Phys. Rev. Lett. 54, 23752378 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.2375
3.
3. Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, Nature (London) 458, 182185 (2009).
http://dx.doi.org/10.1038/nature07786
4.
4. T. Matsuoka and K. Shimizu, Nature (London) 458, 186189 (2009).
http://dx.doi.org/10.1038/nature07827
5.
5. E. Babaev, A. Sudbø, and N. Ashcroft, Nature (London) 431, 666668 (2004).
http://dx.doi.org/10.1038/nature02910
6.
6. C. Buzea and K. Robbie, Supercond. Sci. Technol. 18, R1 (2005).
http://dx.doi.org/10.1088/0953-2048/18/1/R01
7.
7. J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. Nelson, Science 311, 12751278 (2006).
http://dx.doi.org/10.1126/science.1121813
8.
8. A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H.-k. Mao, Phys. Rev. Lett. 96, 155501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.155501
9.
9. M. Somayazulu, L. Finger, R. Hemley, and H. Mao, Science 271, 14001402 (1996).
http://dx.doi.org/10.1126/science.271.5254.1400
10.
10. S. Wang, H.-k. Mao, X.-J. Chen, and W. L. Mao, Proc. Natl. Acad. Sci. U.S.A. 106, 1476314767 (2009).
http://dx.doi.org/10.1073/pnas.0907729106
11.
11. T. A. Strobel, M. Somayazulu, and R. J. Hemley, Phys. Rev. Lett. 103, 065701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.065701
12.
12. M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, Nat. Chem. 2, 5053 (2009).
http://dx.doi.org/10.1038/nchem.445
13.
13. E. Zurek, R. Hoffmann, N. Ashcroft, A. R. Oganov, and A. O. Lyakhov, Proc. Natl. Acad. Sci. U.S.A. 106, 1764017643 (2009).
http://dx.doi.org/10.1073/pnas.0908262106
14.
14. P. Baettig and E. Zurek, Phys. Rev. Lett. 106, 237002 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.237002
15.
15. J. Hooper, B. Altintas, A. Shamp, and E. Zurek, J. Phys. Chem. C 117, 29822992 (2013).
http://dx.doi.org/10.1021/jp311571n
16.
16. H. Wang, S. T. John, K. Tanaka, T. Iitaka, and Y. Ma, Proc. Natl. Acad. Sci. U.S.A. 109, 64636466 (2012).
http://dx.doi.org/10.1073/pnas.1118168109
17.
17. X. Dong, A. Ognaov, G.-R. Qian, Q. Zhu, X.-F. Zhou, and H.-T. Wang, preprint arXiv:1309.3827 (2013).
18.
18. M.-s. Miao, preprint arXiv:1309.0696 (2013).
19.
19. L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, preprint arXiv:1309.2169 (2013).
20.
20. A. Jayaraman, Rev. Mod. Phys. 55, 65108 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.65
21.
21. T. Guillot, Science 286, 7277 (1999).
http://dx.doi.org/10.1126/science.286.5437.72
22.
22. J. Zhang, S. Zhang, H. Weng, W. Zhang, L. Yang, Q. Liu, S. Feng, X. Wang, R. Yu, and L. Cao, Proc. Natl. Acad. Sci. U.S.A. 108, 2428 (2011).
http://dx.doi.org/10.1073/pnas.1014085108
23.
23. A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, Nature (London) 457, 863867 (2009).
http://dx.doi.org/10.1038/nature07736
24.
24. C. J. Pickard and R. Needs, Nat. Mater. 7, 775779 (2008).
http://dx.doi.org/10.1038/nmat2261
25.
25. J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.015503
26.
26. C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.045504
27.
27. L. Zhu, H. Wang, Y. Wang, J. Lv, Y. Ma, Q. Cui, Y. Ma, and G. Zou, Phys. Rev. Lett. 106, 145501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.145501
28.
28. C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H. Mao, Nat. Phys. 7, 211214 (2011).
http://dx.doi.org/10.1038/nphys1864
29.
29. S. M. Woodley and R. Catlow, Nat. Mater. 7, 937946 (2008).
http://dx.doi.org/10.1038/nmat2321
30.
30. C. J. Pickard and R. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).
http://dx.doi.org/10.1088/0953-8984/23/5/053201
31.
31. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094116
32.
32. C. W. Glass, A. R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713720 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.07.020
33.
33. D. C. Lonie and E. Zurek, Comput. Phys. Commun. 182, 372387 (2011).
http://dx.doi.org/10.1016/j.cpc.2010.07.048
34.
34. M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010).
http://dx.doi.org/10.1063/1.3512900
35.
35. F. H. Stillinger, Phys. Rev. E 59, 4851 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.48
36.
36. A. Gavezzotti, Acc. Chem. Res. 27, 309314 (1994).
http://dx.doi.org/10.1021/ar00046a004
37.
37. D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E. Bartashevich, S. X. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. Della Valle, and G. R. Desiraju, Acta Crystallogr. B 67, 535551 (2011).
http://dx.doi.org/10.1107/S0108768111042868
38.
38. W. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko, P. Erk, A. Gavezzotti, D. W. Hofmann, F. J. Leusen, J. P. Lommerse, and W. T. Mooij, Acta Crystallogr. B 58, 647661 (2002).
http://dx.doi.org/10.1107/S0108768102005669
39.
39. S. L. Price, Acc. Chem. Res. 42, 117126 (2009).
http://dx.doi.org/10.1021/ar800147t
40.
40. A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.10727
41.
41. C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, Nat. Mater. 5, 641646 (2006).
http://dx.doi.org/10.1038/nmat1691
42.
42. D. W. Hofmann and J. Apostolakis, J. Mol. Struct. 647, 1739 (2003).
http://dx.doi.org/10.1016/S0022-2860(02)00519-7
43.
43. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371423 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.371
44.
44. S. Kirkpatrick, J. Stat. Phys. 34, 975986 (1984).
http://dx.doi.org/10.1007/BF01009452
45.
45. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Science 220, 671680 (1983).
http://dx.doi.org/10.1126/science.220.4598.671
46.
46. J. M. Hammersley, D. C. Handscomb, and G. Weiss, Phys. Today 18(2), 55 (1965).
http://dx.doi.org/10.1063/1.3047186
47.
47. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
http://dx.doi.org/10.1063/1.1699114
48.
48. J. C. Schön and M. Jansen, Angew. Chem. Int. Ed. 35, 12861304 (1996).
http://dx.doi.org/10.1002/anie.199612861
49.
49. J. C. Schön, K. Doll, and M. Jansen, Phys. Status Solidi B 247, 2339 (2010).
http://dx.doi.org/10.1002/pssb.200945246
50.
50. J. C. Schön, M. A. Wevers, and M. Jansen, J. Mater. Chem. 11, 6977 (2001).
http://dx.doi.org/10.1039/b002956o
51.
51. J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal, and V. Caignaert, Nature (London) 346, 343345 (1990).
http://dx.doi.org/10.1038/346343a0
52.
52. D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 51115116 (1997).
http://dx.doi.org/10.1021/jp970984n
53.
53. J. P. Doye and D. J. Wales, Phys. Rev. Lett. 80, 1357 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1357
54.
54. S. Goedecker, J. Chem. Phys. 120, 9911 (2004).
http://dx.doi.org/10.1063/1.1724816
55.
55. J. A. Flores-Livas, M. Amsler, T. J. Lenosky, L. Lehtovaara, S. Botti, M. A. Marques, and S. Goedecker, Phys. Rev. Lett. 108, 117004 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.117004
56.
56. M. Amsler, J. A. Flores-Livas, T. D. Huan, S. Botti, M. A. Marques, and S. Goedecker, Phys. Rev. Lett. 108, 205505 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.205505
57.
57. T. D. Huan, M. Amsler, V. N. Tuoc, A. Willand, and S. Goedecker, Phys. Rev. B 86, 224110 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.224110
58.
58. A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 1256212566 (2002).
http://dx.doi.org/10.1073/pnas.202427399
59.
59. R. Martoňák, D. Donadio, A. R. Oganov, and M. Parrinello, Nat. Mater. 5, 623626 (2006).
http://dx.doi.org/10.1038/nmat1696
60.
60. J. Sun, D. D. Klug, R. Martoňák, J. A. Montoya, M.-S. Lee, S. Scandolo, and E. Tosatti, Proc. Natl. Acad. Sci. U.S.A. 106, 60776081 (2009).
http://dx.doi.org/10.1073/pnas.0812624106
61.
61. Y. Yao, D. D. Klug, J. Sun, and R. Martoňák, Phys. Rev. Lett. 103, 055503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.055503
62.
62. F. J. Solis and R. J.-B. Wets, Math. Operat. Res. 6, 1930 (1981).
http://dx.doi.org/10.1287/moor.6.1.19
63.
63. H. A. Scheraga, Biophys. Chem. 59, 329339 (1996).
http://dx.doi.org/10.1016/0301-4622(95)00126-3
64.
64. C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473476 (2007).
http://dx.doi.org/10.1038/nphys625
65.
65. C. J. Pickard and R. Needs, Phys. Rev. Lett. 102, 125702 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.125702
66.
66. C. J. Pickard and R. J. Needs, Phys. Rev. B 76, 144114 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144114
67.
67. O. Degtyareva, J. E. Proctor, C. L. Guillaume, E. Gregoryanz, and M. Hanfland, Solid State Commun. 149, 15831586 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.07.022
68.
68. M. Eremets, I. Trojan, S. Medvedev, J. Tse, and Y. Yao, Science 319, 15061509 (2008).
http://dx.doi.org/10.1126/science.1153282
69.
69. I. Goncharenko, M. Eremets, M. Hanfland, J. Tse, M. Amboage, Y. Yao, and I. Trojan, Phys. Rev. Lett. 100, 045504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.045504
70.
70. N. W. Ashcroft, Phys. Rev. Lett. 21, 17481749 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1748
71.
71. P. Loubeyre, F. Occelli, and R. LeToullec, Nature (London) 416, 613617 (2002).
http://dx.doi.org/10.1038/416613a
72.
72. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Rev. Mod. Phys. 84, 1607 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1607
73.
73. P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. Hemley, H. Mao, and L. Finger, Nature (London) 383, 702704 (1996).
http://dx.doi.org/10.1038/383702a0
74.
74. R. Hemley and H. Mao, Phys. Rev. Lett. 61, 857 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.857
75.
75. H.-k. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).
http://dx.doi.org/10.1103/RevModPhys.66.671
76.
76. J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.165302
77.
77. H. Liu, H. Wang, and Y. Ma, J. Phys. Chem. C 116, 92219226 (2012).
http://dx.doi.org/10.1021/jp301596v
78.
78. H. Y. Geng, H. X. Song, J. Li, and Q. Wu, J. Appl. Phys. 111, 063510 (2012).
http://dx.doi.org/10.1063/1.3694793
79.
79. M. Eremets and I. Troyan, Nat. Mater. 10, 927931 (2011).
http://dx.doi.org/10.1038/nmat3175
80.
80. R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.125501
81.
81. C.-s. Zha, Z. Liu, M. Ahart, R. Boehler, and R. J. Hemley, Phys. Rev. Lett. 110, 217402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.217402
82.
82. C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. B 85, 214114 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.214114
83.
83. H. Liu, L. Zhu, W. Cui, and Y. Ma, J. Chem. Phys. 137, 074501 (2012).
http://dx.doi.org/10.1063/1.4745186
84.
84. H. Liu and Y. Ma, Phys. Rev. Lett. 110, 025903 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025903
85.
85. I. B. Magdău and G. J. Ackland, Phys. Rev. B 87, 174110 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174110
86.
86. A. F. Goncharov, S. T. John, H. Wang, J. Yang, V. V. Struzhkin, R. T. Howie, and E. Gregoryanz, Phys. Rev. B 87, 024101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024101
87.
87. D. E. Goldberg and J. H. Holland, Mach. Learn. 3, 9599 (1988).
http://dx.doi.org/10.1023/A:1022602019183
88.
88. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, 1975).
89.
89. D. Deaven and K. Ho, Phys. Rev. Lett. 75, 288 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.288
90.
90. A. Kolmogorov, S. Shah, E. Margine, A. Bialon, T. Hammerschmidt, and R. Drautz, Phys. Rev. Lett. 105, 217003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.217003
91.
91. G. Trimarchi and A. Zunger, Phys. Rev. B 75, 104113 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104113
92.
92. S. Bahmann and J. Kortus, Comput. Phys. Commun. 184, 1618 (2013).
http://dx.doi.org/10.1016/j.cpc.2013.02.007
93.
93. W. Bi, Y. Meng, R. Kumar, A. Cornelius, W. Tipton, R. Hennig, Y. Zhang, C. Chen, and J. Schilling, Phys. Rev. B 83, 104106 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104106
94.
94. N. Abraham and M. Probert, Phys. Rev. B 73, 224104 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224104
95.
95. D. C. Lonie, J. Hooper, B. Altintas, and E. Zurek, Phys. Rev. B 87, 054107 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.054107
96.
96. G. Trimarchi, A. J. Freeman, and A. Zunger, Phys. Rev. B 80, 092101 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.092101
97.
97. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).
http://dx.doi.org/10.1063/1.2210932
98.
98. Y. Ma, A. R. Oganov, and C. W. Glass, Phys. Rev. B 76, 064101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064101
99.
99. Y. Xie, A. R. Oganov, and Y. Ma, Phys. Rev. Lett. 104, 177005 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.177005
100.
100. G. Weck, S. Desgreniers, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 102, 255503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.255503
101.
101. B. Li, Y. Ding, W. Yang, L. Wang, B. Zou, J. Shu, S. Sinogeikin, C. Park, G. Zou, and H.-k. Mao, Proc. Natl. Acad. Sci. U.S.A. 109, 1645916462 (2012).
http://dx.doi.org/10.1073/pnas.1214754109
102.
102. H. Gou, N. Dubrovinskaia, E. Bykova, A. A. Tsirlin, D. Kasinathan, A. Richter, M. Merlini, M. Hanfland, A. M. Abakumov, and D. Batuk, Phys. Rev. Lett. 111, 157002 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.157002
103.
103. J. Neaton and N. Ashcroft, Phys. Rev. Lett. 86, 2830 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2830
104.
104. R. Wentorf, Science 147, 4950 (1965).
http://dx.doi.org/10.1126/science.147.3653.49
105.
105. E. Y. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, Y. Filinchuk, D. Chernyshov, V. Dmitriev, N. Miyajima, A. El Goresy, H. Braun, and S. Van Smaalen, Phys. Rev. Lett. 102, 185501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.185501
106.
106. R. Eberhart and J. Kennedy, A New Optimizer Using Particle Swarm Theory (IEEE, New York, NY, 1995).
107.
107. J. Kennedy, Encyclopedia of Machine Learning (Springer, 2010), pp. 760766.
108.
108. M. R. AlRashidi and M. E. El-Hawary, IEEE Trans. Evol. Comput. 13, 913918 (2009).
http://dx.doi.org/10.1109/TEVC.2006.880326
109.
109. A. Salman, I. Ahmad, and S. Al-Madani, Microprocess. Microsyst. 26, 363371 (2002).
http://dx.doi.org/10.1016/S0141-9331(02)00053-4
110.
110. M. Meissner, M. Schmuker, and G. Schneider, BMC Bioinf. 7, 125 (2006).
http://dx.doi.org/10.1186/1471-2105-7-125
111.
111. S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, J. Comput. Chem. 28, 11771186 (2007).
http://dx.doi.org/10.1002/jcc.20621
112.
112. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 20632070 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.008
113.
113. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Comput. Phys. Commun. 184, 11721182 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.12.009
114.
114. A. R. Oganov and M. Valle, J. Chem. Phys. 130, 104504 (2009).
http://dx.doi.org/10.1063/1.3079326
115.
115. J. Lv, Y. Wang, L. Zhu, and Y. Ma, J. Chem. Phys. 137, 084104 (2012).
http://dx.doi.org/10.1063/1.4746757
116.
116. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, J. Chem. Phys. 137, 224108 (2012).
http://dx.doi.org/10.1063/1.4769731
117.
117. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S.-H. Wei, X. Gong, and H. Xiang, J. Am. Chem. Soc. 133, 1628516290 (2011).
http://dx.doi.org/10.1021/ja2072753
118.
118. X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, J. Chem. Phys. 138, 114101 (2013).
http://dx.doi.org/10.1063/1.4794424
119.
119. X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv, T. Cui, J. Li, L. Chen, C. J. Pickard, and Y. Ma, Phys. Rev. Lett. 109, 175502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.175502
120.
120. L. Zhu, Z. Wang, Y. Wang, G. Zou, H.-k. Mao, and Y. Ma, Proc. Natl. Acad. Sci. U.S.A. 109, 751753 (2012).
http://dx.doi.org/10.1073/pnas.1119375109
121.
121. Z. Zhao, B. Xu, X.-F. Zhou, L.-M. Wang, B. Wen, J. He, Z. Liu, H.-T. Wang, and Y. Tian, Phys. Rev. Lett. 107, 215502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.215502
122.
122. Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, and J. He, J. Am. Chem. Soc. 134, 1236212365 (2012).
http://dx.doi.org/10.1021/ja304380p
123.
123. P. Li, G. Gao, and Y. Ma, J. Chem. Phys. 137, 064502 (2012).
http://dx.doi.org/10.1063/1.4742152
124.
124. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, and Y. Ma, Nat. Commun. 2, 563 (2011).
http://dx.doi.org/10.1038/ncomms1566
125.
125. C. Lu, M. Miao, and Y. Ma, J. Am. Chem. Soc. 135, 1416714171 (2013).
http://dx.doi.org/10.1021/ja404854x
126.
126. D. Nishio-Hamane, M. Zhang, T. Yagi, and Y. Ma, Am. Mineral. 97, 568572 (2012).
http://dx.doi.org/10.2138/am.2012.3973
127.
127. R. Rousseau, K. Uehara, D. D. Klug, and J. S. Tse, Chem. Phys. Chem. 6, 17031706 (2005).
http://dx.doi.org/10.1002/cphc.200500117
128.
128. J. Neaton and N. Ashcroft, Nature (London) 400, 141144 (1999).
http://dx.doi.org/10.1038/22067
129.
129. C. J. Pickard and R. Needs, Phys. Rev. Lett. 102, 146401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.146401
130.
130. Y. Yao, S. T. John, and D. D. Klug, Phys. Rev. Lett. 102, 115503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.115503
131.
131. M. Marqués, M. McMahon, E. Gregoryanz, M. Hanfland, C. Guillaume, C. Pickard, G. Ackland, and R. Nelmes, Phys. Rev. Lett. 106, 095502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.095502
132.
132. Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, Phys. Rev. Lett. 102, 065501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.065501
133.
133. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558563 (2004).
http://dx.doi.org/10.1038/nmat1146
134.
134. E. Gregoryanz, A. F. Goncharov, C. Sanloup, M. Somayazulu, H.-k. Mao, and R. J. Hemley, J. Chem. Phys. 126, 184505 (2007).
http://dx.doi.org/10.1063/1.2723069
135.
135. A. O. Lyakhov, A. R. Oganov, and M. Valle, Comput. Phys. Commun. 181, 16231632 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.06.007
136.
136. Y. A. Wang and E. A. Carter, Theoretical Methods in Condensed Phase Chemistry (Springer, 2002), pp. 117184.
137.
137. J. Behler, R. Martoňák, D. Donadio, and M. Parrinello, Phys. Rev. Lett. 100, 185501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.185501
138.
138. J. Schön, Ž. Čančarević, A. Hannemann, and M. Jansen, J. Chem. Phys. 128, 194712 (2008).
http://dx.doi.org/10.1063/1.2919988
139.
139. A. Van De Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.11
140.
140. M. J. Mitchell and J. A. McCammon, J. Computat. Chemist. 12, 271275 (1991).
http://dx.doi.org/10.1002/jcc.540120218
141.
141. P. Virnau and M. Müller, J. Chem. Phys. 120, 10925 (2004).
http://dx.doi.org/10.1063/1.1739216
142.
142. R. Martoňák, A. Laio, and M. Parrinello, Phys. Rev. Lett. 90, 075503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.075503
143.
143. M. Parrinello and A. Rahman, J. App. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
144.
144. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
145.
145. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
146.
146. K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
147.
147. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
148.
148. S. D. Kenny, J. D. C. McConnell, and K. Refson, Am. Mineral. 85, 16811685 (2000).
149.
149. S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.1738
150.
150. Y. Ma, A. R. Oganov, and Y. Xie, Phys. Rev. B 78, 014102 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.014102
151.
151. N. Troullier and J. L. Martins, Phys. Rev. B 43, 19932006 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
152.
152. Y. Yao, S. T. John, Z. Song, and D. D. Klug, Phys. Rev. B 79, 092103 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.092103
153.
153. K. Schwarz, J. Solid State Chem. 176, 319328 (2003).
http://dx.doi.org/10.1016/S0022-4596(03)00213-5
154.
154. D. Bradley, J. Eggert, R. Smith, S. Prisbrey, D. Hicks, D. Braun, J. Biener, A. Hamza, R. Rudd, and G. Collins, Phys. Rev. Lett. 102, 075503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.075503
155.
155. M. Gillan, D. Alfe, J. Brodholt, L. Vočadlo, and G. Price, Rep. Prog. Phys. 69, 2365 (2006).
http://dx.doi.org/10.1088/0034-4885/69/8/R03
156.
156. C. J. Allègre, J.-P. Poirier, E. Humler, and A. W. Hofmann, Earth. Planet. Sci. Lett. 134, 515526 (1995).
http://dx.doi.org/10.1016/0012-821X(95)00123-T
157.
157. S. R. Hart and A. Zindler, Chem. Geol. 57, 247267 (1986).
http://dx.doi.org/10.1016/0009-2541(86)90053-7
158.
158. A. R. Oganov and S. Ono, Nature (London) 430, 445448 (2004).
http://dx.doi.org/10.1038/nature02701
159.
159. M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Science 304, 855858 (2004).
http://dx.doi.org/10.1126/science.1095932
160.
160. A. Hermann, N. Ashcroft, and R. Hoffmann, Proc. Natl. Acad. Sci. U.S.A. 109, 745750 (2012).
http://dx.doi.org/10.1073/pnas.1118694109
161.
161. C. J. Pickard, M. Martinez-Canales, and R. J. Needs, Phys. Rev. Lett. 110, 245701 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.245701
162.
162. B. Militzer and H. F. Wilson, Phys. Rev. Lett. 105, 195701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.195701
163.
163. M. Ji, K. Umemoto, C.-Z. Wang, K.-M. Ho, and R. M. Wentzcovitch, Phys. Rev. B 84, 220105 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.220105
164.
164. J. M. McMahon, Phys. Rev. B 84, 220104 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.220104
165.
165. H. Hirai, K. Konagai, T. Kawamura, Y. Yamamoto, and T. Yagi, Phys. Earth Planet. Inter. 174, 242246 (2009).
http://dx.doi.org/10.1016/j.pepi.2008.06.011
166.
166. G. Gao, A. R. Oganov, Y. Ma, H. Wang, P. Li, Y. Li, T. Iitaka, and G. Zou, J. Chem. Phys. 133, 144508 (2010).
http://dx.doi.org/10.1063/1.3488102
167.
167. L. Sun, W. Yi, L. Wang, J. Shu, S. Sinogeikin, Y. Meng, G. Shen, L. Bai, Y. Li, and J. Liu, Chem. Phys. Lett. 473, 7274 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.03.072
168.
168. M. Wang, Y. Li, T. Cui, Y. Ma, and G. Zou, Appl. Phys. Lett. 93, 101905 (2008).
http://dx.doi.org/10.1063/1.2977760
169.
169. H. Wang, Q. Li, Y. Li, Y. Xu, T. Cui, A. R. Oganov, and Y. Ma, Phys. Rev. B 79, 132109 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.132109
170.
170. G. Gao, A. R. Oganov, P. Li, Z. Li, H. Wang, T. Cui, Y. Ma, A. Bergara, A. O. Lyakhov, and T. Iitaka, Proc. Natl. Acad. Sci. U.S.A. 107, 13171320 (2010).
http://dx.doi.org/10.1073/pnas.0908342107
171.
171. G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka, Y. Ma, and G. Zou, Phys. Rev. Lett. 101, 107002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107002
172.
172. Y. Li, G. Gao, Y. Xie, Y. Ma, T. Cui, and G. Zou, Proc. Natl. Acad. Sci. U.S.A. 107, 1570815711 (2010).
http://dx.doi.org/10.1073/pnas.1007354107
173.
173. X. Chen, Y. Wang, T. Cui, Y. Ma, G. Zou, and T. Iitaka, J. Chem. Phys. 128, 194713 (2008).
http://dx.doi.org/10.1063/1.2920184
174.
174. Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou, Phys. Rev. B 76, 155127 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155127
175.
175. X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Adv. Funct. Mater. 22, 14251435 (2012).
http://dx.doi.org/10.1002/adfm.201102546
176.
176. A. Franceschetti and A. Zunger, Nature (London) 402, 6063 (1999).
http://dx.doi.org/10.1038/46995
177.
177. B. Meredig and C. Wolverton, Nat. Mater. 12, 123127 (2012).
http://dx.doi.org/10.1038/nmat3490
178.
178. S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191201 (2013).
http://dx.doi.org/10.1038/nmat3568
179.
179. J. Haines, J. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 123 (2001).
http://dx.doi.org/10.1146/annurev.matsci.31.1.1
180.
180. Y. Li, H. Wang, Q. Li, Y. Ma, T. Cui, and G. Zou, Inorg. Chem. 48, 99049909 (2009).
http://dx.doi.org/10.1021/ic9014702
181.
181. H. Fujihisa, Y. Nakamoto, K. Shimizu, T. Yabuuchi, and Y. Gotoh, Phys. Rev. Lett. 101, 095503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.095503
182.
182. M. Sakata, Y. Nakamoto, K. Shimizu, T. Matsuoka, and Y. Ohishi, Phys. Rev. B 83, 220512 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.220512
183.
183. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 6364 (2001).
http://dx.doi.org/10.1038/35065039
184.
184. M. Imai, T. Hirano, T. Kikegawa, and O. Shimomura, Phys. Rev. B 58, 11922 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.11922
185.
185. J. Feng, W. Grochala, T. Jaroń, R. Hoffmann, A. Bergara, and N. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.017006
186.
186. X. Wang, H. Lin, Y. Ma, and M.-S. Miao, preprint arXiv:1206.2874 (2012).
187.
187. M.-s. Miao, Nat. Chem. 5, 846852 (2013).
http://dx.doi.org/10.1038/nchem.1754
188.
188. M. Tramšek and B. Žemva, Acta Chim. Slov. 53, 105116 (2006).
189.
189. J. H. Holloway and E. G. Hope, Adv. Inorg. Chem. 46, 51100 (1998).
190.
190. D. Smith, J. Am. Chem. Soc. 85, 816817 (1963).
http://dx.doi.org/10.1021/ja00889a036
191.
191. C. Sanloup, S. A. Bonev, M. Hochlaf, and H. E. Maynard-Casely, Phys. Rev. Lett. 110, 265501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.265501
192.
192. P. Loubeyre, R. Letoullec, and J.-P. Pinceaux, Phys. Rev. Lett. 72, 1360 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1360
193.
193. F. Peng, M. Miao, H. Wang, Q. Li, and Y. Ma, J. Am. Chem. Soc. 134, 1859918605 (2012).
http://dx.doi.org/10.1021/ja308490a
194.
194. A. Hermann, A. McSorley, N. W. Ashcroft, and R. Hoffmann, J. Am. Chem. Soc. 134, 1860618618 (2012).
http://dx.doi.org/10.1021/ja308492g
195.
195. W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, M. Somayazulu, and V. B. Prakapenka, Science 342, 1502 (2013).
http://dx.doi.org/10.1126/science.1244989
196.
196. G. Gao, N. Ashcroft, and R. Hoffmann, J. Am. Chem. Soc. 135, 1165111656 (2013).
http://dx.doi.org/10.1021/ja405359a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4861966
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4861966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4861966
2014-01-22
2014-08-30

Abstract

Crystal structure prediction at high pressures unbiased by any prior known structure information has recently become a topic of considerable interest. We here present a short overview of recently developed structure prediction methods and propose current challenges for crystal structure prediction. We focus on first-principles crystal structure prediction at high pressures, paying particular attention to novel high pressure structures uncovered by efficient structure prediction methods. Finally, a brief perspective on the outstanding issues that remain to be solved and some directions for future structure prediction researches at high pressure are presented and discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4861966.html;jsessionid=k22me8vb9uuu.x-aip-live-02?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4861966&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Crystal structure prediction at high pressures
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4861966
10.1063/1.4861966
SEARCH_EXPAND_ITEM