Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/4/10.1063/1.4862740
1.
1. R. Blinc, Ferroelectrics 267, 3 (2002).
http://dx.doi.org/10.1080/713715894
2.
2. S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, and Y. Tokura, Nat. Mater. 4, 163 (2005).
http://dx.doi.org/10.1038/nmat1298
3.
3. S. Horiuchi and Y. Tokura, Nat. Mater. 7, 357 (2008).
http://dx.doi.org/10.1038/nmat2137
4.
4. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, and Y. Tokura, Nature 463, 789 (2010).
http://dx.doi.org/10.1038/nature08731
5.
5. R. Blinc, J. Phys. Chem. Solids 13, 204 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90003-2
6.
6. R. Blinc and S. Svetina, Phys. Rev. 147, 423 (1966).
http://dx.doi.org/10.1103/PhysRev.147.423
7.
7. M. I. McMahon, R. J. Nelmes, W. F. Kuhst, R. Dorwarth, R. O. Piltz, and Z. Tun, Nature 348, 317 (1990).
http://dx.doi.org/10.1038/348317a0
8.
8. M. I. McMahon, R. J. Nelmes, W. F. Kuhs, and D. Semmingsen, Z. Kristallogr. 195, 231 (1991).
http://dx.doi.org/10.1524/zkri.1991.195.3-4.231
9.
9. A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955).
http://dx.doi.org/10.1107/S0365110X55000340
10.
10. X. Z. Li, B. Walker, and A. Michaelides, Proc. Natl. Acad. Sci. U.S.A. 108, 6369 (2011).
http://dx.doi.org/10.1073/pnas.1016653108
11.
11. A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2173
12.
12. N. Dalal, A. Klymachyov, and A. Bussmann-Holder, Phys. Rev. Lett. 81, 5924 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5924
13.
13. G. F. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.135505
14.
14. G. Reiter, A. Shukla, P. Platzman, and J. Mayers, New J. Phys. 10, 013016 (2008).
http://dx.doi.org/10.1088/1367-2630/10/1/013016
15.
15. S. Koval, J. Kohanoff, R. L. Migoni, and E. Tosatti, Phys. Rev. Lett. 89, 187602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.187602
16.
16. S. Koval, J. Kohanoff, J. Lasave, G. Colizzi, and R. L. Migoni, Phys. Rev. B 71, 184102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184102
17.
17. J. Petersson, Ferroelectrics 35, 57 (1981).
http://dx.doi.org/10.1080/00150198108017665
18.
18. A. Katrusiak and R. Nelmes, J. Phys. C: Solid State Phys. 19, L765 (1986).
http://dx.doi.org/10.1088/0022-3719/19/32/001
19.
19. D. Semmingsen, Z. Tun, R. J. Nelmes, R. K. McMullan, and T. F. Koetzle, Z. Kristallogr. 210, 934 (1995).
http://dx.doi.org/10.1524/zkri.1995.210.12.934
20.
20. S. Dolin, A. Levin, T. Y. Mikhailova, M. Solin, and N. Zinova, Int. J. Quantum Chem. 111, 2671 (2011).
http://dx.doi.org/10.1002/qua.22743
21.
21. C. Rovira, J. J. Novoa, and P. Ballone, J. Chem. Phys. 115, 6406 (2001).
http://dx.doi.org/10.1063/1.1402166
22.
22. J. Palomar and N. S. Dalal, Ferroelectrics 272, 173 (2002).
http://dx.doi.org/10.1080/00150190211558
23.
23. A. Bussmann-Holder and N. Dalal, Structure and Bonding (Springer, 2007), Vol. 124, pp. 121.
24.
24. H. Ishizuka, Y. Motome, N. Furukawa, and S. Suzuki, Phys. Rev. B 84, 064120 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064120
25.
25. V. Srinivasan and D. Sebastiani, J. Phys. Chem. C 115, 12631 (2011).
http://dx.doi.org/10.1021/jp202584p
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4862740 for computational convergence tests, comparisons between DFT functionals and MP2 and RPA calculations, and additional figures displaying collective proton jumps. [Supplementary Material]
27.
27. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
28.
28. G. Kresse and J. Furthmüller, J. Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
29.
29. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
30.
30. D. Marx and M. Parrinello, Z. Phys. B 95, 143 (1994).
http://dx.doi.org/10.1007/BF01312185
31.
31. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, Science 275, 817 (1997).
http://dx.doi.org/10.1126/science.275.5301.817
32.
32. D. Alfè and M. J. Gillan, J. Chem. Phys. 133, 044103 (2010).
http://dx.doi.org/10.1063/1.3466919
33.
33. K.-D. Ehrhardt, U. Buchenau, E. Samuelsen, and H. Maier, Phys. Rev. B 29, 996 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.996
34.
34. J. Palomar and N. Dalal, J. Phys. Chem. B 106, 4799 (2002).
http://dx.doi.org/10.1021/jp013486u
35.
35. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
36.
36. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
37.
37. D. Semmingsen, F. J. Hollander, and T. F. Koetzle, J. Chem. Phys. 66, 4405 (1977).
http://dx.doi.org/10.1063/1.433745
38.
38. K.-S. Lee, J. Jung Kweon, I.-H. Oh, and C. Eui Lee, J. Phys. Chem. Solids 73, 890 (2012).
http://dx.doi.org/10.1016/j.jpcs.2012.02.013
39.
39.No dynamical information can be obtained from PIMD simulations but the trajectories sample the quantum mechanical configuration space and Fig. 4(b) thus demonstrates real correlations in the system.
40.
40. E. Schwegler, M. Sharma, F. Gygi, and G. Galli, Proc. Natl. Acad. Sci. U.S.A. 105, 14779 (2008).
http://dx.doi.org/10.1073/pnas.0808137105
41.
41. Z. Smedarchina, W. Siebrand, A. Fernández-Ramos, and Q. Cui, J. Am. Chem. Soc. 125, 243 (2003).
http://dx.doi.org/10.1021/ja0210594
42.
42. J. Chen, X.-Z. Li, Q. Zhang, A. Michaelides, and E. Wang, Phys. Chem. Chem. Phys. 15, 6344 (2013).
http://dx.doi.org/10.1039/C3CP50218J
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4862740
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4862740
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4862740
2014-01-22
2016-12-05

Abstract

simulations that account for nuclear quantum effects have been used to examine the order-disorder transition in squaric acid, a prototypical H-bonded antiferroelectric crystal. Our simulations reproduce the >100 K difference in transition temperature observed upon deuteration as well as the strong geometrical isotope effect observed on intermolecular separations within the crystal. We find that collective transfer of protons along the H-bonding chains – facilitated by quantum mechanical tunneling – is critical to the order-disorder transition and the geometrical isotope effect. This sheds light on the origin of isotope effects and the importance of tunneling in squaric acid which likely extends to other H-bonded ferroelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4862740.html;jsessionid=JXYlfBN25UpXJaDlIG7omiJN.x-aip-live-06?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4862740&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/4/10.1063/1.4862740&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/4/10.1063/1.4862740'
Right1,Right2,Right3,