Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/4/10.1063/1.4862821
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. A. Richardella, J. M. Tang, M. E. Flatté, and A. Yazdani, Nature (London) 442, 436439 (2006).
http://dx.doi.org/10.1038/nature04971
3.
3. W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Phys. Rev. Lett. 100, 027205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027205
4.
4. K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.256405
5.
5. P. A. Denis, J. Phys. Chem. C 117, 3895 (2013).
http://dx.doi.org/10.1021/jp306544m
6.
6. J. Petucci, C. LeBlond, M. Karimi, and G. Vidali, J. Chem. Phys. 139, 044706 (2013).
http://dx.doi.org/10.1063/1.4813919
7.
7. E. J. Kan, H. Ren, F. Wu, Z. Y. Li, R. F. Lu, C. Y. Xiao, K. M. Deng, and J. L. Yang, J. Phys. Chem. C 116, 3142 (2012).
http://dx.doi.org/10.1021/jp2106988
8.
8. F. Karlický, R. Zbořil, and M. Otyepka, J. Chem. Phys. 137, 034709 (2012).
http://dx.doi.org/10.1063/1.4736998
9.
9. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Phys. Rev. Lett. 102, 126807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.126807
10.
10. Y. Wang, Y. Huang, Y. Song, X. Y. Zhang, Y. F. Ma, J. J. Liang, and Y. S. Chen, Nano Lett. 9, 220 (2009).
http://dx.doi.org/10.1021/nl802810g
11.
11. C. Peng, Y. Z. Xiong, Z. B. Liu, F. Zhang, E. C. Ou, J. T. Qian, Y. Q. Xiong, and W. J. Xu, Appl. Surf. Sci. 280, 914 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.05.094
12.
12. S. Niyogi, E. Bekyarova, J. Hong, S. Khizroev, C. Berger, W. de Heer, and R. Haddon, J. Phys. Chem. Lett. 2, 2487 (2011).
http://dx.doi.org/10.1021/jz200426d
13.
13. S. J. Park and R. S. Ruoff, Nat. Nanotech. 4, 217 (2009).
http://dx.doi.org/10.1038/nnano.2009.58
14.
14. E. Bekyarova, M. E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W. de Heer, and R. C. Haddon, J. Am. Chem. Soc. 131, 1336 (2009).
http://dx.doi.org/10.1021/ja8057327
15.
15. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, and J. M. Tour, J. Am. Chem. Soc. 130, 16201 (2008).
http://dx.doi.org/10.1021/ja806499w
16.
16. E. Pembroke, G. D. Ruan, A. Sinitskii, and J. M. Tour, Nano Res. 6(2), 138 (2013).
http://dx.doi.org/10.1007/s12274-013-0289-7
17.
17. D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2009).
http://dx.doi.org/10.1021/nl803214a
18.
18. A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, and J. M. Tour, ACS Nano 4, 1949 (2010).
http://dx.doi.org/10.1021/nn901899j
19.
19. D.-E. Jiang, B. G. Sumpter, and S. Dai, J. Phys. Chem. B 110, 23628 (2006).
http://dx.doi.org/10.1021/jp065980+
20.
20. P. Z. Tang, P. C. Chen, J. Wu, F. Y. Kang, J. Li, A. Rubio, and W. H. Duan, Nanoscale 5, 7537 (2013).
http://dx.doi.org/10.1039/c3nr01572f
21.
21. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
22.
22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
23.
23. S. J. Grimme, J. Com. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4862821 for structures of all possible M2AA and M2AB configurations; corresponding DOS and spin density distribution for M2AA and M2AB configurations; spin density distribution for single methoxyphenyl group functionalized 6 × 10 and 7 × 10 zigzag GNRs; and spin density distribution for methoxyphenyl group dimer functionalized 6 × 10 and 7 × 10 zigzag GNRs. [Supplementary Material]
25.
25. T. D. Nguyen, G. Hukic-Markosian, F. J. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund, and Z. Vardeny, Nat. Mater. 9, 345 (2010).
http://dx.doi.org/10.1038/nmat2633
26.
26. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
27.
27. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
28.
28. R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, Nano Lett. 10, 398 (2010).
http://dx.doi.org/10.1021/nl902741x
29.
29. L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat. Nanotechnol. 3, 397 (2008).
http://dx.doi.org/10.1038/nnano.2008.149
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4862821
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4862821
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4862821
2014-01-30
2016-12-08

Abstract

Graphene monolayers functionalized with aryl groups exhibit configuration-dependent electronic and magnetic properties. The aryl groups were adsorbed in pairs of neighboring atoms in the same sublattice A (different sublattices) of graphene monolayers, denoted as the M AA (M AB) configuration. The M AA configuration behaved as a ferromagnetic semiconductor. The band gaps for the majority and minority bands were 1.1 eV and 1.2 eV, respectively. The M AB configuration behaved as a nonmagnetic semiconductor with a band gap of 0.8 eV. Each aryl group could induce 1 Bohr magneton ( ) into the molecule-graphene system. Armchair graphene nanoribbons (GNRs) exhibited the same configuration-dependent magnetic properties as the graphene monolayers. The net spin of the functionalized zigzag GNRs was mainly localized on the edges demonstrating an adsorption site-dependent magnetism. For the zigzag GNRs, both the M AA and M AB configurations possibly had a magnetic moment. Each aryl group could induce 1.5–3.5 into the molecule-graphene system. There was a metal-to-insulator transition after adsorption of the aryl groups for the zigzag GNRs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4862821.html;jsessionid=vp-TId4TEBMI2zqOCf8Wzl_q.x-aip-live-03?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4862821&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/4/10.1063/1.4862821&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/4/10.1063/1.4862821'
Right1,Right2,Right3,