1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Overcoming the root search problem in complex quantum trajectory calculations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/4/10.1063/1.4862898
1.
1. W. H. Miller, Adv. Chem. Phys. 25, 69 (1974).
2.
2. J. H. van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928).
http://dx.doi.org/10.1073/pnas.14.2.178
3.
3. M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967).
http://dx.doi.org/10.1063/1.1705112
4.
4. E. J. Heller, J. Chem. Phys. 66, 5777 (1977).
http://dx.doi.org/10.1063/1.433853
5.
5. J. R. Klauder, Phys. Rev. D 19, 2349 (1979).
http://dx.doi.org/10.1103/PhysRevD.19.2349
6.
6. J. R. Klauder, “Path integrals,” in Proceedings of the Nato Advanced Science Institute, edited by G. J. Papadopoulos and J. T. Devreese (Plenum, NY, 1978).
7.
7. Y. Weissman, J. Chem. Phys. 76, 4067 (1982).
http://dx.doi.org/10.1063/1.443481
8.
8. A. L. Xavier and M. A. M. de Aguiar, Phys. Rev. A 54, 1808 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.1808
9.
9. M. Baranger, M. A. M. de Aguiar, F. Keck, H. J. Korsch, and B. Schellhaass, J. Phys. A 34, 7227 (2001).
http://dx.doi.org/10.1088/0305-4470/34/36/309
10.
10. D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987).
http://dx.doi.org/10.1063/1.453647
11.
11. E. J. Heller, J. Chem. Phys. 62, 1544 (1975).
http://dx.doi.org/10.1063/1.430620
12.
12. Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006).
http://dx.doi.org/10.1063/1.2400851
13.
13. E. J. Heller, J. Chem. Phys. 65, 4979 (1976).
http://dx.doi.org/10.1063/1.432974
14.
14. D. Huber, E. J. Heller, and R. G. Littlejohn, J. Chem. Phys. 89, 2003 (1988).
http://dx.doi.org/10.1063/1.455714
15.
15. N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012);
http://dx.doi.org/10.1063/1.4739845
15.N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A518 (2012).
http://dx.doi.org/10.1063/1.4739846
16.
16. N. Zamstein, “Complex quantum trajectories: Methodology development and chemical applications,” Ph.D. dissertation (Weizmann Institute of Science, 2013).
17.
17. M. A. M. de Aguiar, S. A. Vitiello, and A. Grigolo, Chem. Phys. 370, 42 (2010).
http://dx.doi.org/10.1016/j.chemphys.2010.01.020
18.
18. F. Grossmann and A. L. J. Xavier, Phys. Lett. A 243, 243 (1998).
http://dx.doi.org/10.1016/S0375-9601(98)00265-5
19.
19. M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984).
http://dx.doi.org/10.1016/0301-0104(84)80039-7
20.
20. E. Kluk, M. F. Herman, and H. L. Davis, J. Chem. Phys. 84, 326 (1986).
http://dx.doi.org/10.1063/1.450142
21.
21. R. Gelabert, X. Gimenez, M. Thoss, H. Wang, and W. H. Miller, J. Phys. Chem. A 104, 10321 (2000).
http://dx.doi.org/10.1021/jp0012451
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4862898
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4862898
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4862898
2014-01-24
2014-10-22

Abstract

Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys.87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4862898.html;jsessionid=1msaixhpf029o.x-aip-live-06?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4862898&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Overcoming the root search problem in complex quantum trajectory calculations
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4862898
10.1063/1.4862898
SEARCH_EXPAND_ITEM