1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Three-dimensional model for phonon confinement in small particles: Quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/4/10.1063/1.4864120
1.
1. K. Roodenko, I. Goldthorpe, P. McIntyre, and Y. Chabal, Phys. Rev. B 82, 115210 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115210
2.
2. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90337-9
3.
3. J. Ager, D. Veirs, and G. Rosenblatt, Phys. Rev. B 43, 6491 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.6491
4.
4. J. Kulda, H. Kainzmaier, D. Strauch, B. Dorner, M. Lorenzen, and M. Krisch, Phys. Rev. B 66, 241202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.241202
5.
5. J. Yarnell, J. Warren, and R. Wenzel, Phys. Rev. Lett. 13, 13 (1964).
http://dx.doi.org/10.1103/PhysRevLett.13.13
6.
6. E. K. Chow, X.-Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, and D. Ho, Sci. Transl. Med. 3, 73ra21 (2011).
http://dx.doi.org/10.1126/scitranslmed.3001713
7.
7. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2011).
http://dx.doi.org/10.1038/nnano.2011.209
8.
8. M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Krüger, and E. Ōsawa, Adv. Mater. 19, 1201 (2007).
http://dx.doi.org/10.1002/adma.200601452
9.
9. M. Chaigneau, G. Picardi, H. A. Girard, J.-C. Arnault, and R. Ossikovski, J. Nanopart. Res. 14, 955 (2012).
http://dx.doi.org/10.1007/s11051-012-0955-9
10.
10. M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett. 62, 3114 (1993).
http://dx.doi.org/10.1063/1.109154
11.
11. S. Osswald, V. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, Phys. Rev. B 80, 075419 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075419
12.
12. A. K. Arora, T. Ravindran, G. L. Reddy, A. K. Sikder, and D. Misra, Diam. Relat. Mater. 10, 1477 (2001).
http://dx.doi.org/10.1016/S0925-9635(00)00616-6
13.
13. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Y. Vul’, and E. Ōsawa, Carbon N. Y. 43, 1722 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.02.020
14.
14. W. Kiefer and H. J. Bernstein, Appl. Spectrosc. 25, 500 (1971).
http://dx.doi.org/10.1366/000370271779950229
15.
15. J. Warren, J. Yarnell, G. Dolling, and R. Cowley, Phys. Rev. 158, 805 (1967).
http://dx.doi.org/10.1103/PhysRev.158.805
16.
16. M. Schwoerer-Böhning, A. Macrander, and D. Arms, Phys. Rev. Lett. 80, 5572 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5572
17.
17. J. Kulda, B. Dorner, B. Roessli, H. Sterner, R. Bauer, T. May, K. Karch, P. Pavone, and D. Strauch, Solid State Commun. 99, 799 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00323-7
18.
18. R. Shuker, and R. Gammon, Phys. Rev. Lett. 25, 222 (1970).
http://dx.doi.org/10.1103/PhysRevLett.25.222
19.
19. S. Kelly, F. H. Pollak, and M. Tomkiewicz, J. Phys. Chem. B 101, 2730 (1997).
http://dx.doi.org/10.1021/jp962747a
20.
20. A. Pottier, S. Cassaignon, C. Chanéac, F. Villain, E. Tronc, and J.-P. Jolivet, J. Mater. Chem. 13, 877 (2003).
http://dx.doi.org/10.1039/b211271j
21.
21. M. Salis, P. C. Ricci, and A. Anedda, Open Condens. Matter Phys. J. 2, 15 (2009).
http://dx.doi.org/10.2174/1874186X00902010015
22.
22. W. Li, S. Irle, and H. A. Witek, ACS Nano 4, 4475 (2010).
http://dx.doi.org/10.1021/nn1004205
23.
23. A. S. Barnard and M. Sternberg, J. Mater. Chem. 17, 4811 (2007).
http://dx.doi.org/10.1039/b710189a
24.
24. M. V. Korobov, D. S. Volkov, N. V. Avramenko, L. A. Belyaeva, P. I. Semenyuk, and M. A. Proskurnin, Nanoscale 5, 1529 (2013).
http://dx.doi.org/10.1039/c2nr33512c
25.
25. O. A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, and C. E. Nebel, ACS Nano 4, 4824 (2010).
http://dx.doi.org/10.1021/nn100748k
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4864120
Loading
/content/aip/journal/jcp/140/4/10.1063/1.4864120
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/4/10.1063/1.4864120
2014-01-30
2014-09-21

Abstract

Raman spectroscopy of nano-scale materials is facing a challenge of developing a physically sound quantitative approach for the phonon confinement effect, which profoundly affects the phonon Raman band shapes of small particles. We have developed a new approach based on 3-dimensional phonon dispersion functions. It analyzes the Raman band shapes quantitatively in terms of the particle size distributions. To test the model, we have successfully obtained good fits of the observed phonon Raman spectra of diamond nanoparticles in the size range from 1 to 100 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/4/1.4864120.html;jsessionid=hnf9eo03wb5g.x-aip-live-06?itemId=/content/aip/journal/jcp/140/4/10.1063/1.4864120&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Three-dimensional model for phonon confinement in small particles: Quantitative bandshape analysis of size-dependent Raman spectra of nanodiamonds
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/4/10.1063/1.4864120
10.1063/1.4864120
SEARCH_EXPAND_ITEM