Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/5/10.1063/1.4851455
1.
1. R. Dohrn and O. Pfohl, Fluid Phase Equilib. 194–197, 15 (2002).
http://dx.doi.org/10.1016/S0378-3812(01)00791-9
2.
2. W. B. Whiting, J. Chem. Eng. Data 41, 935 (1996).
http://dx.doi.org/10.1021/je9600764
3.
3. S. Gupta and J. D. Olson, Ind. Eng. Chem. Res. 42, 6359 (2003).
http://dx.doi.org/10.1021/ie030170v
4.
4. L. E. K. Achenie, R. Gani, and V. Venkatasubramanian, Computer Aided Molecular Design: Theory and Practice, 1st ed. (Elsevier Science B.V., Amsterdam, The Netherlands, 2003).
5.
5. F. E. Pereira, E. Keskes, A. Galindo, G. Jackson, and C. S. Adjiman, “Integrated design of CO2 capture processes from natural gas,” in Process Systems Engineering : Energy Systems Engineering, edited by M. C. Georgiadis, E. S. Kikkinides, and E. N. Pistikopoulos (Wiley-VCH, Weinheim, 2008), Vol. 5, Chap. 8, pp. 231248.
6.
6. A. Bardow, K. Steur, and J. Gross, Ind. Eng. Chem. Res. 49, 2834 (2010).
http://dx.doi.org/10.1021/ie901281w
7.
7. F. E. Pereira, E. Keskes, A. Galindo, G. Jackson, and C. S. Adjiman, Comput. Chem. Eng. 35, 474 (2011).
http://dx.doi.org/10.1016/j.compchemeng.2010.06.016
8.
8. A. L. Lydersen, Engineering Experimental Station Report No. 3 (University of Wisconsin, College of Engineering, 1955).
9.
9. K. G. Joback and R. C. Reid, Chem. Eng. Commun. 57, 233 (1987).
http://dx.doi.org/10.1080/00986448708960487
10.
10. L. Constantinou and R. Gani, AIChE J. 40, 1697 (1994).
http://dx.doi.org/10.1002/aic.690401011
11.
11. J. Marrero and R. Gani, Fluid Phase Equilib. 183–184, 183 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00431-9
12.
12. A. Fredenslund, R. L. Jones, and J. M. Prausnitz, AIChE J. 21, 1086 (1975).
http://dx.doi.org/10.1002/aic.690210607
13.
13. U. Weidlich and J. Gmehling, Ind. Eng. Chem. Res. 26, 1372 (1987).
http://dx.doi.org/10.1021/ie00067a018
14.
14. A. Klamt and F. Eckert, Fluid Phase Equilib. 172, 43 (2000).
http://dx.doi.org/10.1016/S0378-3812(00)00357-5
15.
15. T. Holderbaum and J. Gmehling, Fluid Phase Equilib. 70, 251 (1991).
http://dx.doi.org/10.1016/0378-3812(91)85038-V
16.
16. S. Skjold-Jørgensen, Fluid Phase Equilib. 16, 317 (1984).
http://dx.doi.org/10.1016/0378-3812(84)80005-9
17.
17. H. P. Gros, S. Bottini, and E. A. Brignole, Fluid Phase Equilib. 116, 537 (1996).
http://dx.doi.org/10.1016/0378-3812(95)02928-1
18.
18. J. Ahlers and J. Gmehling, Fluid Phase Equilib. 191, 177 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00626-4
19.
19. J. Ahlers and J. Gmehling, Ind. Eng. Chem. Res. 41, 3489 (2002).
http://dx.doi.org/10.1021/ie020047o
20.
20. J. Ahlers and J. Gmehling, Ind. Eng. Chem. Res. 41, 5890 (2002).
http://dx.doi.org/10.1021/ie0203734
21.
21. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Fluid Phase Equilib. 52, 31 (1989).
http://dx.doi.org/10.1016/0378-3812(89)80308-5
22.
22. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990).
http://dx.doi.org/10.1021/ie00104a021
23.
23. B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed. (Mc-Graw Hill, 2001).
24.
24. V. Papaioannou, C. S. Adjiman, G. Jackson, and A. Galindo, “Group contribution methodologies for the prediction of thermodynamic properties and phase behavior in mixtures,” in Process Systems Engineering: Molecular Systems Engineering, edited by C. S. Adjiman and A. Galindo (Wiley-VCH, Weinheim, 2010), Chap. 4, Vol. 6, pp. 135173.
25.
25. E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 40, 2193 (2001).
http://dx.doi.org/10.1021/ie000773w
26.
26. I. G. Economou, Ind. Eng. Chem. Res. 41, 953 (2002).
http://dx.doi.org/10.1021/ie0102201
27.
27. S. P. Tan, H. Adidharma, and M. Radosz, Ind. Eng. Chem. Res. 47, 8063 (2008).
http://dx.doi.org/10.1021/ie8008764
28.
28. C. McCabe, and A. Galindo, “SAFT Associating fluids and fluid mixtures,” in Applied Thermodynamics of Fluids, edited by A. R. H. Goodwin, J. V. Sengers, and C. J. Peters (Royal Society of Chemistry, UK, 2010), Chap. 8, pp. 215279.
29.
29. M. Lora, F. Rindfleisch, and M. A. McHugh, J. Appl. Polym. Sci. 73, 1979 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4628(19990906)73:10<1979::AID-APP17>3.0.CO;2-T
30.
30. J. Vijande, M. M. Piñeiro, D. Bessières, H. Saint-Guirons, and J. L. Legido, Phys. Chem. Chem. Phys. 6, 766 (2004).
http://dx.doi.org/10.1039/b312223a
31.
31. S. Tamouza, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Fluid Phase Equilib. 222–223, 67 (2004).
http://dx.doi.org/10.1016/j.fluid.2004.06.038
32.
32. S. Tamouza, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Fluid Phase Equilib. 228–229, 409 (2005).
http://dx.doi.org/10.1016/j.fluid.2004.10.003
33.
33. K. E. Gubbins and C. H. Twu, Chem. Eng. Sci. 33, 863 (1978).
http://dx.doi.org/10.1016/0009-2509(78)85176-8
34.
34. T. X. N. Thi, S. Tamouza, P. Tobaly, J. P. Passarello, and J. C. de Hemptinne, Fluid Phase Equilib. 238, 254 (2005).
http://dx.doi.org/10.1016/j.fluid.2005.10.009
35.
35. D. Nguyen-Huynh, M. Benamira, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Fluid Phase Equilib. 254, 60 (2007).
http://dx.doi.org/10.1016/j.fluid.2007.02.023
36.
36. D. Nguyen-Huynh, J. C. de Hemptinne, R. Lugo, J. P. Passarello, and P. Tobaly, Ind. Eng. Chem. Res. 50, 7467 (2011).
http://dx.doi.org/10.1021/ie102045g
37.
37. J. Rozmus, J. C. de Hemptinne, and P. Mougin, Fluid Phase Equilib. 303, 15 (2011).
http://dx.doi.org/10.1016/j.fluid.2010.12.009
38.
38. J. Rozmus, J. C. de Hemptinne, N. Ferrando, and P. Mougin, Fluid Phase Equilib. 329, 78 (2012).
http://dx.doi.org/10.1016/j.fluid.2012.06.004
39.
39. J. Vijande, M. M. Piñeiro, J. L. Legido, and D. Bessières, Ind. Eng. Chem. Res. 49, 9394 (2010).
http://dx.doi.org/10.1021/ie1002813
40.
40. A. Tihic, G. M. Kontogeorgis, N. von Solms, M. L. Michelsen, and L. Constantinou, Ind. Eng. Chem. Res. 47, 5092 (2008).
http://dx.doi.org/10.1021/ie0710768
41.
41. A. Tihic, N. von Solms, M. L. Michelsen, G. M. Kontogeorgis, and L. Constantinou, Fluid Phase Equilib. 281, 60 (2009).
http://dx.doi.org/10.1016/j.fluid.2009.04.003
42.
42. C. Le Thi, S. Tamouza, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Ind. Eng. Chem. Res. 45, 6803 (2006).
http://dx.doi.org/10.1021/ie060424n
43.
43. A. J. Haslam, A. Galindo, and G. Jackson, Fluid Phase Equilib. 266, 105 (2008).
http://dx.doi.org/10.1016/j.fluid.2008.02.004
44.
44. D. Nguyen-Huynh, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Ind. Eng. Chem. Res. 47, 8847 (2008).
http://dx.doi.org/10.1021/ie071643r
45.
45. D. Nguyen-Huynh, T. K. S. Tran, S. Tamouza, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne, Ind. Eng. Chem. Res. 47, 8859 (2008).
http://dx.doi.org/10.1021/ie071644j
46.
46. M. Mourah, D. Nguyen-Huyhn, J. P. Passarello, J. C. de Hemptinne, and P. Tobaly, Fluid Phase Equilib. 298, 154 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.07.013
47.
47. M. S. Wertheim, J. Stat. Phys. 35, 19 (1984).
http://dx.doi.org/10.1007/BF01017362
48.
48. M. S. Wertheim, J. Stat. Phys. 35, 35 (1984).
http://dx.doi.org/10.1007/BF01017363
49.
49. M. S. Wertheim, J. Stat. Phys. 42, 459 (1986).
http://dx.doi.org/10.1007/BF01127721
50.
50. M. S. Wertheim, J. Stat. Phys. 42, 477 (1986).
http://dx.doi.org/10.1007/BF01127722
51.
51. M. S. Wertheim, J. Chem. Phys. 87, 7323 (1987).
http://dx.doi.org/10.1063/1.453326
52.
52. W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys. 65, 1057 (1988).
http://dx.doi.org/10.1080/00268978800101601
53.
53. G. Jackson, W. G. Chapman, and K. E. Gubbins, Mol. Phys. 65, 1 (1988).
http://dx.doi.org/10.1080/00268978800100821
54.
54. A. L. Archer and G. Jackson, Mol. Phys. 73, 881 (1991).
http://dx.doi.org/10.1080/00268979100101631
55.
55. M. D. Amos and G. Jackson, Mol. Phys. 74, 191 (1991).
http://dx.doi.org/10.1080/00268979100102161
56.
56. R. P. Sear, M. D. Amos, and G. Jackson, Mol. Phys. 80, 777 (1993).
http://dx.doi.org/10.1080/00268979300102631
57.
57. A. L. Archer, M. D. Amos, G. Jackson, and I. A. McLure, Int. J. Thermophys. 17, 201 (1996).
http://dx.doi.org/10.1007/BF01448222
58.
58. M. Banaszak, C. K. Chen, and M. Radosz, Macromolecules 29, 6481 (1996).
http://dx.doi.org/10.1021/ma9517815
59.
59. M. Banaszak and M. Radosz, Fluid Phase Equilib. 193, 179 (2002).
http://dx.doi.org/10.1016/S0378-3812(01)00730-0
60.
60. H. Adidharma and M. Radosz, Ind. Eng. Chem. Res. 37, 4453 (1998).
http://dx.doi.org/10.1021/ie980345e
61.
61. H. Adidharma and M. Radosz, Fluid Phase Equilib. 158–160, 165 (1999).
http://dx.doi.org/10.1016/S0378-3812(99)00149-1
62.
62. C. McCabe, A. Gil-Villegas, G. Jackson, and F. del Río, Mol. Phys. 97, 551 (1999).
http://dx.doi.org/10.1080/00268979909482854
63.
63. Y. Peng, H. Zhao, and C. McCabe, Mol. Phys. 104, 571 (2006).
http://dx.doi.org/10.1080/00268970500475901
64.
64. F. J. Blas and L. F. Vega, Mol. Phys. 92, 135 (1997).
http://dx.doi.org/10.1080/002689797170707
65.
65. J. Gross, O. Spuhl, F. Tumakaka, and G. Sadowski, Ind. Eng. Chem. Res. 42, 1266 (2003).
http://dx.doi.org/10.1021/ie020509y
66.
66. A. Lymperiadis, C. S. Adjiman, A. Galindo, and G. Jackson, J. Chem. Phys. 127, 234903 (2007).
http://dx.doi.org/10.1063/1.2813894
67.
67. A. Lymperiadis, C. S. Adjiman, G. Jackson, and A. Galindo, Fluid Phase Equilib. 274, 85 (2008).
http://dx.doi.org/10.1016/j.fluid.2008.08.005
68.
68. V. Papaioannou, C. S. Adjiman, G. Jackson, and A. Galindo, Fluid Phase Equilib. 306, 82 (2011).
http://dx.doi.org/10.1016/j.fluid.2011.02.016
69.
69. S. S. Ashrafmansouri and S. Raeissi, J. Supercrit. Fluids 63, 81 (2012).
http://dx.doi.org/10.1016/j.supflu.2011.12.014
70.
70. Y. Peng, K. D. Goff, M. C. dos Ramos, and C. McCabe, Fluid Phase Equilib. 277, 131 (2009).
http://dx.doi.org/10.1016/j.fluid.2008.11.008
71.
71. K. Paduszyński and U. Domańska, Ind. Eng. Chem. Res. 51, 12967 (2012).
http://dx.doi.org/10.1021/ie301998j
72.
72. T. Lafitte, D. Bessieres, M. M. Piñeiro, and J. L. Daridon, J. Chem. Phys. 124, 024509 (2006).
http://dx.doi.org/10.1063/1.2140276
73.
73. T. Lafitte, A. Apostolakou, C. Avendaño, A. Galindo, C. S. Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139, 154504 (2013).
http://dx.doi.org/10.1063/1.4819786
74.
74. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon Press, Oxford, 1981).
75.
75. J. Gregorowicz, J. P. O'Connell, and C. J. Peters, Fluid Phase Equilib. 116, 94 (1996).
http://dx.doi.org/10.1016/0378-3812(95)02876-5
76.
76. I. Polishuk, Ind. Eng. Chem. Res. 50, 4183 (2011).
http://dx.doi.org/10.1021/ie102420n
77.
77. X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, and G. M. Kontogeorgis, Ind. Eng. Chem. Res. 51, 14903 (2012).
http://dx.doi.org/10.1021/ie3018127
78.
78. M. R. Faradonbeh, J. Abedi, and T. G. Harding, Can. J. Chem. Eng. 91, 101 (2013).
http://dx.doi.org/10.1002/cjce.20682
79.
79. C. M. Colina, L. F. Turrens, K. E. Gubbins, C. Olivera-Fuentes, and L. F. Vega, Ind. Eng. Chem. Res. 41, 1069 (2002).
http://dx.doi.org/10.1021/ie010382x
80.
80. F. J. Blas and L. F. Vega, Ind. Eng. Chem. Res. 37, 660 (1998).
http://dx.doi.org/10.1021/ie970449+
81.
81. F. Castro-Marcano, C. G. Olivera-Fuentes, and C. M. Colina, Ind. Eng. Chem. Res. 47, 8894 (2008).
http://dx.doi.org/10.1021/ie800651q
82.
82. F. Llovell and L. F. Vega, J. Phys. Chem. B 110, 11427 (2006).
http://dx.doi.org/10.1021/jp0608022
83.
83. F. Llovell, C. J. Peters, and L. F. Vega, Fluid Phase Equilib. 248, 115 (2006).
http://dx.doi.org/10.1016/j.fluid.2006.07.018
84.
84. N. I. Diamantonis and I. G. Economou, Energy Fuels 25, 3334 (2011).
http://dx.doi.org/10.1021/ef200387p
85.
85. J. Chen and J.-G. Mi, Fluid Phase Equilib. 186, 165 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00521-0
86.
86. A. Maghari and M. S. Sadeghi, Fluid Phase Equilib. 252, 152 (2007).
http://dx.doi.org/10.1016/j.fluid.2006.12.007
87.
87. A. Maghari and M. Hamzehloo, Fluid Phase Equilib. 302, 195 (2011).
http://dx.doi.org/10.1016/j.fluid.2010.08.019
88.
88. F. Llovell and L. F. Vega, J. Supercrit. Fluids 41, 204 (2007).
http://dx.doi.org/10.1016/j.supflu.2006.10.001
89.
89. A. M. A. Dias, F. Llovell, J. A. P. Coutinho, I. M. Marrucho, and L. F. Vega, Fluid Phase Equilib. 286, 134 (2009).
http://dx.doi.org/10.1016/j.fluid.2009.08.018
90.
90. O. Vilaseca, F. Llovell, J. Yustos, R. M. Marcos, and L. F. Vega, J. Supercrit. Fluids 55, 755 (2010).
http://dx.doi.org/10.1016/j.supflu.2010.10.015
91.
91. E. Forte, F. Llovell, J. P. M. Trusler, and A. Galindo, Fluid Phase Equilib. 337, 274 (2013).
http://dx.doi.org/10.1016/j.fluid.2012.09.022
92.
92. M. S. Shin, Y. Lee, and H. Kim, J. Chem. Thermodyn. 40, 688 (2008).
http://dx.doi.org/10.1016/j.jct.2007.10.008
93.
93. Y. Lee, M. S. Shin, and H. Kim, J. Chem. Thermodyn. 40, 1580 (2008).
http://dx.doi.org/10.1016/j.jct.2008.06.010
94.
94. A. J. de Villiers, C. E. Schwarz, A. J. Burger, and G. M. Kontogeorgis, Fluid Phase Equilib. 338, 1 (2013).
http://dx.doi.org/10.1016/j.fluid.2012.09.035
95.
95. T. Lafitte, M. M. Piñeiro, J. L. Daridon, and D. Bessières, J. Phys. Chem. B 111, 3447 (2007).
http://dx.doi.org/10.1021/jp0682208
96.
96. L. A. Davies, A. Gil-Villegas, and G. Jackson, Int. J. Thermophys. 19, 675 (1998).
http://dx.doi.org/10.1023/A:1022662116418
97.
97. G. Mie, Ann. Phys. (Berlin) 316, 657 (1903).
http://dx.doi.org/10.1002/andp.19033160802
98.
98. E. A. Grüneisen, Z. Elektrochem. Angew. Phys. Chem. 17, 737 (1911).
99.
99. E. A. Grüneisen, Ann. Phys. (Berlin) 344, 257 (1912).
http://dx.doi.org/10.1002/andp.19123441202
100.
100. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 441 (1924).
http://dx.doi.org/10.1098/rspa.1924.0081
101.
101. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).
http://dx.doi.org/10.1098/rspa.1924.0082
102.
102. J. E. Lennard-Jones, Proc. Phys. Soc. 43, 461 (1931).
http://dx.doi.org/10.1088/0959-5309/43/5/301
103.
103. L. L. Lee, Molecular Thermodynamics of Nonideal Fluids (Butterworths, Boston, 1988).
104.
104. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.587
105.
105. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
http://dx.doi.org/10.1063/1.1701689
106.
106. P. Paricaud, J. Chem. Phys. 124, 154505 (2006).
http://dx.doi.org/10.1063/1.2181979
107.
107. T. Boublík, J. Chem. Phys. 53, 471 (1970).
http://dx.doi.org/10.1063/1.1673824
108.
108. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54, 1523 (1971).
http://dx.doi.org/10.1063/1.1675048
109.
109. A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, J. Chem. Phys. 106, 4168 (1997).
http://dx.doi.org/10.1063/1.473101
110.
110. A. Galindo, L. A. Davies, A. Gil-Villegas, and G. Jackson, Mol. Phys. 93, 241 (1998).
http://dx.doi.org/10.1080/002689798169249
111.
111. B.-J. Zhang, Fluid Phase Equilib. 154, 1 (1999).
http://dx.doi.org/10.1016/S0378-3812(98)00431-2
112.
112. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
http://dx.doi.org/10.1063/1.1672048
113.
113. T. Boublík, Mol. Phys. 59, 775 (1986).
http://dx.doi.org/10.1080/00268978600102391
114.
114. S. Dufal, T. Lafitte, A. J. Haslam, A. Galindo, and G. Jackson, “The A in SAFT: Developing the contribution of association to the free energy within a Wertheim TPT1 treatment of generic Mie fluids,” Mol. Phys. (submitted).
115.
115. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworths, 1982).
116.
116. K. E. Bett, J. S. Rowlinson, and G. Saville, Thermodynamics for Chemical Engineers (MIT Press, 1975).
117.
117. F. E. Pereira, G. Jackson, A. Galindo, and C. S. Adjiman, Fluid Phase Equilib. 299, 1 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.08.001
118.
118. PSE Ltd., gPROMS v. 3.4.0 (2011), see http://www.psenterprise.com/.
119.
119. S. H. Huang and M. Radosz, Ind. Eng. Chem. Res. 29, 2284 (1990).
http://dx.doi.org/10.1021/ie00107a014
120.
120. C. McCabe and S. B. Kiselev, Ind. Eng. Chem. Res. 43, 2839 (2004).
http://dx.doi.org/10.1021/ie034288n
121.
121. E. Forte, F. Llovell, L. F. Vega, J. P. M. Trusler, and A. Galindo, J. Chem. Phys. 134, 154102 (2011).
http://dx.doi.org/10.1063/1.3570614
122.
122. F. London, Trans. Faraday Soc. 33, 8b (1937).
http://dx.doi.org/10.1039/tf937330008b
123.
123. J. J. Potoff and D. A. Bernard-Brunel, J. Phys. Chem. B 113, 14725 (2009).
http://dx.doi.org/10.1021/jp9072137
124.
124. G. Jackson and K. E. Gubbins, Pure Appl. Chem. 61, 1021 (1989).
http://dx.doi.org/10.1351/pac198961061021
125.
125. C. McCabe and G. Jackson, Phys. Chem. Chem. Phys. 1, 2057 (1999).
http://dx.doi.org/10.1039/a808085b
126.
126. P. Paricaud, A. Galindo, and G. Jackson, Fluid Phase Equilib. 194–197, 87 (2002).
http://dx.doi.org/10.1016/S0378-3812(01)00659-8
127.
127. J. Gmehling, J. Li, and M. Schiller, Ind. Eng. Chem. Res. 32, 178 (1993).
http://dx.doi.org/10.1021/ie00013a024
128.
128. M. Kleiner and G. Sadowski, J. Phys. Chem. C 111, 15544 (2007).
http://dx.doi.org/10.1021/jp072640v
129.
129. J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001).
http://dx.doi.org/10.1021/ie0003887
130.
130. E. W. Lemmon, M. L. Hubert, and M. O. McLinden, “NIST standard reference database 23: Reference fluid thermodynamic and transport properties - REFPROP, version 9.0,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2010).
131.
131. C.-S. Wu and Y.-P. Chen, Fluid Phase Equilib. 100, 103 (1994).
http://dx.doi.org/10.1016/0378-3812(94)80004-9
132.
132. S. J. Han, C. J. Cregg, and M. Radosz, Ind. Eng. Chem. Res. 36, 5520 (1997).
http://dx.doi.org/10.1021/ie960504z
133.
133. J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 41, 1084 (2002).
http://dx.doi.org/10.1021/ie010449g
134.
134. P. Paricaud, A. Galindo, and G. Jackson, Ind. Eng. Chem. Res. 43, 6871 (2004).
http://dx.doi.org/10.1021/ie049592a
135.
135. A. R. Shultz and P. J. Flory, J. Am. Chem. Soc. 74, 4760 (1952).
http://dx.doi.org/10.1021/ja01139a010
136.
136. C. E. Schwarz and I. Nieuwoudt, J. Supercrit. Fluids 27, 145 (2003).
http://dx.doi.org/10.1016/S0896-8446(02)00268-1
137.
137. R. K. Surana, R. P. Danner, A. B. de Haan, and N. Beckers, Fluid Phase Equilib. 139, 361 (1997).
http://dx.doi.org/10.1016/S0378-3812(97)00172-6
138.
138. P. J. Flory, R. A. Orwoll, and A. Vrij, J. Am. Chem. Soc. 86, 3507 (1964).
http://dx.doi.org/10.1021/ja01071a023
139.
139. P. J. Flory, R. A. Orwoll, and A. Vrij, J. Am. Chem. Soc. 86, 3515 (1964).
http://dx.doi.org/10.1021/ja01071a024
140.
140. R. A. Orwoll and P. J. Flory, J. Am. Chem. Soc. 89, 6822 (1967).
http://dx.doi.org/10.1021/ja01002a003
141.
141. F. J. Blas and I. Fujihara, Mol. Phys. 100, 2823 (2002).
http://dx.doi.org/10.1080/00268970210142594
142.
142. F. J. Blas, Mol. Phys. 100, 2221 (2002).
http://dx.doi.org/10.1080/00268970210130209
143.
143. M. C. dos Ramos and F. J. Blas, J. Phys. Chem. B 109, 12145 (2005).
http://dx.doi.org/10.1021/jp0507142
144.
144. A. Touriño, M. Hervello, V. Moreno, M. Iglesias, and G. Marino, Phys. Chem. Liq. 42, 37 (2004).
http://dx.doi.org/10.1080/0031910021000059054
145.
145. M. F. Bolotnikov, Y. A. Neruchev, Y. F. Melikhov, V. N. Verveyko, and M. V. Verveyko, J. Chem. Eng. Data 50, 1095 (2005).
http://dx.doi.org/10.1021/je050060q
146.
146. E. P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institutes of Standards and Technology WebBook, Gaithersburg MD, 20899), see http://webbook.nist.gov/ (retrieved March 2013).
147.
147. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Fluids (Nauka, Moscow, 1972) (cited in DETHERM).
148.
148. E. A. Macedo and P. Rasmussen, J. Chem. Eng. Data 27, 463 (1982).
http://dx.doi.org/10.1021/je00030a028
149.
149. R. L. Gardas, I. Johnson, D. M. D. Vaz, I. M. A. Fonseca, and A. G. M. Ferreira, J. Chem. Eng. Data 52, 737 (2007).
http://dx.doi.org/10.1021/je060339m
150.
150. S. Young and G. L. Thomas, J. Chem. Soc., Trans. 63, 1191 (1893).
http://dx.doi.org/10.1039/ct8936301191
151.
151. E. Lladosa, J. B. Montón, M. C. Burguet, and R. Muñoz, J. Chem. Eng. Data 53, 108 (2008).
http://dx.doi.org/10.1021/je700411p
152.
152. G. Liessmann, W. Schmidt, and S. Reiffarth, Data Compilation of the Saechsische Olefinwerke Boehlen, Germany (1995) (cited in DETHERM).
153.
153. W. V. Steele, R. D. Chirico, S. E. Knipmeyer, and A. Nguyen, J. Chem. Eng. Data 41, 1255 (1996).
http://dx.doi.org/10.1021/je9601117
154.
154. E. L. Krasnykh, S. P. Verevkin, B. Koutek, and J. Doubsky, J. Chem. Thermodyn. 38, 717 (2006).
http://dx.doi.org/10.1016/j.jct.2005.08.003
155.
155. E. F. Meyer, M. J. Awe, and R. E. Wagner, J. Chem. Eng. Data 25, 371 (1980).
http://dx.doi.org/10.1021/je60087a030
156.
156. S. L. Oswal, P. Oswal, P. S. Modi, J. P. Dave, and R. L. Gardas, Thermochim. Acta 410, 1 (2004).
http://dx.doi.org/10.1016/S0040-6031(03)00368-X
157.
157. S. Salerno, M. Cascella, D. May, P. Watson, and D. Tassios, Fluid Phase Equilib. 27, 15 (1986).
http://dx.doi.org/10.1016/0378-3812(86)87038-8
158.
158. C. Viton, M. Chavret, E. Behar, and J. Jose, Int. Electron. J. Phys. Chem. Data 2, 215 (1996) (cited in DETHERM).
159.
159. R. D. Chirico, A. Nguyen, W. V. Steele, M. M. Strube, and C. Tsonopoulos, J. Chem. Eng. Data 34, 149 (1989).
http://dx.doi.org/10.1021/je00056a002
160.
160. T. Sawaya, I. Mokbel, N. Ainous, E. Rauzy, C. Berro, and J. Jose, J. Chem. Eng. Data 51, 854 (2006).
http://dx.doi.org/10.1021/je050182i
161.
161. B. D. Smith and R. Srivastava, Thermodynamic Data for Pure Compounds Part A: Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).
162.
162. L. Pias, M. I. Paz-Andrade, F. Sarmiento, E. Rodriguez-Nuñez, and J. Fernandez, Fluid phase Equilib. 28, 183 (1986).
http://dx.doi.org/10.1016/0378-3812(86)85077-4
163.
163. L. Fernández, E. Pérez, J. Ortega, J. Canosa, and J. Wisniak, J. Chem. Eng. Data 55, 5519 (2010).
http://dx.doi.org/10.1021/je100832h
164.
164. J.-L. Daridon, H. Carrier, and B. Lagourette, Int. J. Thermophys. 23, 697 (2002).
http://dx.doi.org/10.1023/A:1015451020209
165.
165. S. Dutour, J.-L. Daridon, and B. Lagourette, High Temp.-High Press. 33, 371 (2001).
http://dx.doi.org/10.1068/htjr007
166.
166. P. Zoller and D. J. Walsh, Standard Pressure-Volume-Temperature Data for Polymers (Technomic, Lancaster-Basel, 1995).
167.
167. M. J. Pratas, S. Freitas, M. B. Oliveira, S. C. Monteiro, A. S. Lima, and J. A. P. Coutinho, J. Chem. Eng. Data 55, 3983 (2010).
http://dx.doi.org/10.1021/je100042c
168.
168. E. H. I. Ndiaye, D. Nasri, and J. L. Daridon, J. Chem. Eng. Data 57, 2667 (2012).
http://dx.doi.org/10.1021/je300405a
169.
169. E. H. I. Ndiaye, M. Habrioux, J. A. P. Coutinho, M. L. L. Paredes, and J. L. Daridon, J. Chem. Eng. Data 58, 1371 (2013).
http://dx.doi.org/10.1021/je400122k
170.
170. H. H. Reamer and B. H. Sage, J. Chem. Eng. Data 9, 24 (1964).
http://dx.doi.org/10.1021/je60020a009
171.
171. L.-C. Feng, C.-H. Chou, M. Tang, and Y.-P. Chen, J. Chem. Eng. Data 43, 658 (1998).
http://dx.doi.org/10.1021/je9800205
172.
172. J. Ortega, F. Espiau, and F. J. Toledo, J. Chem. Thermodyn. 36, 193 (2004).
http://dx.doi.org/10.1016/j.jct.2003.11.008
173.
173. S. L. Oswal, P. Oswal, and J. P. Dave, J. Mol. Liq. 94, 203 (2001).
http://dx.doi.org/10.1016/S0167-7322(01)00269-0
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/5/10.1063/1.4851455
Loading
/content/aip/journal/jcp/140/5/10.1063/1.4851455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/5/10.1063/1.4851455
2014-02-04
2016-12-06

Abstract

A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al. , J. Chem. Phys.139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the -alkanes and the -alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH, CH, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/5/1.4851455.html;jsessionid=kIAnAbc52Z1cOoN2jM-NOZ4e.x-aip-live-03?itemId=/content/aip/journal/jcp/140/5/10.1063/1.4851455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/5/10.1063/1.4851455&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/5/10.1063/1.4851455'
Right1,Right2,Right3,