Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/5/10.1063/1.4863329
1.
1. M. Karplus and J. A. McCammon, Nat. Struct. Biol. 9, 646 (2002).
http://dx.doi.org/10.1038/nsb0902-646
2.
2. G. Chopraa, C. M. Summab, and M. Levitt, Proc. Natl. Acad. Sci. U.S.A. 105, 20239 (2008).
http://dx.doi.org/10.1073/pnas.0810818105
3.
3. S. C. L. Kamerlin, S. Vicatos, A. Dryga, and A. Warshel, Annu. Rev. Phys. Chem. 62, 41 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103335
4.
4. K. M. Mohamed and A. A. Mohamad, Microfluid Nanofluid 8, 283 (2010).
http://dx.doi.org/10.1007/s10404-009-0529-z
5.
5. G. D. Fabritiis, R. Delgado-Buscalioni, and P. V. Coveney, Phys. Rev. Lett. 97, 134501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.134501
6.
6. X. Nie, M. O. Robbins, and S. Chen, Phys. Rev. Lett. 96, 134501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.134501
7.
7. D. A. Fedosov and G. E. Karniadakis, J. Comput. Phys. 228, 1157 (2009).
http://dx.doi.org/10.1016/j.jcp.2008.10.024
8.
8. A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder, Multiscale Model. Simul. 8, 871 (2010).
http://dx.doi.org/10.1137/090774501
9.
9. R. Delgado-Buscalioni, K. Kremer, and M. Praprotnik, J. Chem. Phys. 128, 114110 (2008).
http://dx.doi.org/10.1063/1.2890729
10.
10. R. Delgado-Buscalioni, K. Kremer, and M. Praprotnik, J. Chem. Phys. 131, 244107 (2009).
http://dx.doi.org/10.1063/1.3272265
11.
11. J. H. Walther, M. Praprotnik, E. M. Kotsalis, and P. Koumoutsakos, J. Comput. Phys. 231, 2677 (2012).
http://dx.doi.org/10.1016/j.jcp.2011.12.015
12.
12. G. S. Ayton, W. G. Noid, and G. A. Voth, Curr. Opin. Struct. Biol. 17, 192 (2007).
http://dx.doi.org/10.1016/j.sbi.2007.03.004
13.
13. A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2003).
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141807
14.
14. M. Neri, C. Anselmi, M. Cascalla, A. Maritan, and P. Carloni, Phys. Rev. Lett. 95, 218102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.218102
15.
15. A. J. Rzepiela, M. Louhivuori, C. Peter, and S. J. Marrink, Phys. Chem. Chem. Phys. 13, 10437 (2011).
http://dx.doi.org/10.1039/c0cp02981e
16.
16. S. Riniker, A. P. Eichenberger, and W. F. van Gunsteren, J. Phys. Chem. B 116, 8873 (2012).
http://dx.doi.org/10.1021/jp304188z
17.
17. W. Han and K. Schulten, J. Chem. Theory Comput. 8, 44134424 (2012).
http://dx.doi.org/10.1021/ct300696c
18.
18. P. Sokkar, S. M. Choi, and Y. M. Rhee, J. Chem. Theory Comput. 9, 3728 (2013).
http://dx.doi.org/10.1021/ct400091a
19.
19. T. A. Wassenaar, H. I. Ingolfsson, M. Priess, S. J. Marrink, and L. V. Schaefer, J. Phys. Chem. B 117, 3516 (2013).
http://dx.doi.org/10.1021/jp311533p
20.
20. H. C. Gonzalez, L. Darre, and S. Pantano, J. Phys. Chem. B 117, 14438 (2013).
http://dx.doi.org/10.1021/jp4079579
21.
21. M. Praprotnik, L. Delle Site, and K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093707
22.
22. C. F. Abrams, J. Chem. Phys. 123, 234101 (2005).
http://dx.doi.org/10.1063/1.2136884
23.
23. S. O. Nielsen, P. B. Moore, and B. Ensing, Phys. Rev. Lett. 105, 237802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.237802
24.
24. A. Heyden and D. G. Truhlar, J. Chem. Theory Comput. 4, 217 (2008).
http://dx.doi.org/10.1021/ct700269m
25.
25. S. Artemova and S. Redon, Phys. Rev. Lett. 109, 190201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.190201
26.
26. R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.108301
27.
27. R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, and D. Donadio, Phys. Rev. Lett. 111, 060601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.060601
28.
28. M. Praprotnik, L. Delle Site, and K. Kremer, J. Chem. Phys. 123, 224106 (2005).
http://dx.doi.org/10.1063/1.2132286
29.
29. M. Praprotnik, S. Poblete, and K. Kremer, J. Stat. Phys. 145, 946 (2011).
http://dx.doi.org/10.1007/s10955-011-0312-x
30.
30. A. B. Poma and L. Delle Site, Phys. Rev. Lett. 104, 250201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.250201
31.
31. H. Wang, C. Schütte, and L. Delle Site, J. Chem. Theory Comput. 8, 2878 (2012).
http://dx.doi.org/10.1021/ct3003354
32.
32. H. Wang, C. Hartmann, C. Schütte, and L. Delle Site, Phys. Rev. X 3, 011018 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011018
33.
33. M. Fuhrmans, B. P. Sanders, S. J. Marrink, and A. H. de Vries, Theor. Chem. Acc. 125, 335 (2010).
http://dx.doi.org/10.1007/s00214-009-0590-4
34.
34. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, Intermolecular Forces (Reidel, 1981), p. 331.
35.
35. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, J. Phys. Chem. B 111, 7812 (2007).
http://dx.doi.org/10.1021/jp071097f
36.
36. S. J. Marrink and D. P. Tieleman, Chem. Soc. Rev. 42, 6801 (2013).
http://dx.doi.org/10.1039/c3cs60093a
37.
37. C. Oostenbrink, A. Villa, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem. 25, 1656 (2004).
http://dx.doi.org/10.1002/jcc.20090
38.
38. H. Bock, K. E. Gubbins, and S. H. Klapp, Phys. Rev. Lett. 98, 267801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.267801
39.
39. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and K. Kremer, Phys. Rev. Lett. 108, 170602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.170602
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4863329 for adaptive resolution simulation of an atomistic protein in MARTINI water. [Supplementary Material]
41.
41. M. Neumann, Mol. Phys. 50, 841 (1983).
http://dx.doi.org/10.1080/00268978300102721
42.
42. J. D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, and D. Reith, Comput. Phys. Commun. 184, 1129 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.12.004
43.
43. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
44.
44. B. Dunweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).
http://dx.doi.org/10.1063/1.465445
45.
45.The speedup could be even larger: in the CG region one could use longer time steps (in principle), although that is not implemented yet.
46.
46. S. O. Yesylevskyy, L. V. Schafer, D. Sengupta, and S. J. Marrink, PLoS Comput. Biol. 6, e1000810 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000810
47.
47. Z. Wu, Q. Cui, and A. Yethiraj, J. Phys. Chem. B 114, 10524 (2010).
http://dx.doi.org/10.1021/jp1019763
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/5/10.1063/1.4863329
Loading
/content/aip/journal/jcp/140/5/10.1063/1.4863329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/5/10.1063/1.4863329
2014-02-06
2016-12-06

Abstract

We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/5/1.4863329.html;jsessionid=5OlDeOXTajwCI-WQfxDN0jeY.x-aip-live-02?itemId=/content/aip/journal/jcp/140/5/10.1063/1.4863329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/5/10.1063/1.4863329&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/5/10.1063/1.4863329'
Right1,Right2,Right3,