Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/6/10.1063/1.4864002
1.
1. T. M. Miller, in CRC Handbook of Chemistry and Physics, 94th ed., edited by W. M. Haynes (CRC Press/Taylor and Francis, Boca Raton, FL, Internet Version 2014).
2.
2. D. Z. Kandula, Ch. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, Phys. Rev. Lett. 105, 063001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.063001
3.
3. F. Grandinetti, Int. J. Mass Spectrom. 237, 243 (2004).
http://dx.doi.org/10.1016/j.ijms.2004.07.012
4.
4. F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 98, 3564 (1993).
http://dx.doi.org/10.1063/1.464079
5.
5. W. Schöllkopf and J. P. Toennies, Science 266, 1345 (1994).
http://dx.doi.org/10.1126/science.266.5189.1345
6.
6. W. Cencek, M. Przybytek, J. Komasa, J. B. Mehl, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 136, 224303 (2012).
http://dx.doi.org/10.1063/1.4712218
7.
7. W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012).
http://dx.doi.org/10.1063/1.3692800
8.
8. C. W. Bauschlicher Jr., H. Partridge, and D. Ceperley, Chem. Phys. Lett. 160, 183 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87579-7
9.
9. J. Ackermann and H. Hogreve, Chem. Phys. 157, 75 (1991).
http://dx.doi.org/10.1016/0301-0104(91)87132-F
10.
10. W. Cencek and J. Rychlewski, J. Chem. Phys. 102, 2533 (1995).
http://dx.doi.org/10.1063/1.468682
11.
11. A. Carrington, C. H. Pyne, and P. J. Knowles, J. Chem. Phys. 102, 5979 (1995).
http://dx.doi.org/10.1063/1.469332
12.
12. F. X. Gadéa and I. Paidarová, Chem. Phys. 209, 281 (1996).
http://dx.doi.org/10.1016/0301-0104(96)00107-3
13.
13. W. Cencek and J. Rychlewski, Chem. Phys. Lett. 320, 549 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00303-1
14.
14. J. Xie, B. Poirier, and G. I. Gellene, J. Chem. Phys. 122, 184310 (2005).
http://dx.doi.org/10.1063/1.1891685
15.
15. M. Stanke, D. Kȩdziera, S. Bubin, M. Molski, and L. Adamowicz, Phys. Rev. A 76, 052506 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.052506
16.
16. A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, J. Chem. Phys. 126, 104102 (2007).
http://dx.doi.org/10.1063/1.2566637
17.
17. N. Yu and W. H. Wing, Phys. Rev. Lett. 59, 2055 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2055
18.
18. M. Raunhardt, M. Schäfer, N. Vanhaecke, and F. Merkt, J. Chem. Phys. 128, 164310 (2008).
http://dx.doi.org/10.1063/1.2904563
19.
19. L. Coman, M. Guna, L. Simons, and K. A. Hardy, Phys. Rev. Lett. 83, 2715 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2715
20.
20. W. J. van der Zande and W. Ubachs, Phys. Rev. Lett. 84, 3212 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3212
21.
21. K. Hardy and X. W. Wang, Phys. Rev. Lett. 84, 3213 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3213
22.
22. D. S. Ginter, M. L. Ginter, and C. M. Brown, J. Chem. Phys. 81, 6013 (1984).
http://dx.doi.org/10.1063/1.447603
23.
23. D. S. Ginter and M. L. Ginter, J. Mol. Spectrosc. 82, 152 (1980).
http://dx.doi.org/10.1016/0022-2852(80)90106-X
24.
24. F. B. Orth and M. L. Ginter, J. Mol. Spectrosc. 64, 223 (1977).
http://dx.doi.org/10.1016/0022-2852(77)90262-4
25.
25. F. B. Orth and M. L. Ginter, J. Mol. Spectrosc. 61, 282 (1976).
http://dx.doi.org/10.1016/0022-2852(76)90250-2
26.
26. C. M. Brown and M. L. Ginter, J. Mol. Spectrosc. 40, 302 (1971).
http://dx.doi.org/10.1016/0022-2852(71)90156-1
27.
27. G. Herzberg and Ch. Jungen, J. Chem. Phys. 84, 1181 (1986).
http://dx.doi.org/10.1063/1.450509
28.
28. C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).
http://dx.doi.org/10.1006/jmsp.1998.7637
29.
29. K. Kawaguchi, Y. Hama, and S. Nishida, J. Mol. Spectrosc. 232, 1 (2005).
http://dx.doi.org/10.1016/j.jms.2005.02.007
30.
30. D. N. McKinsey, C. R. Brome, J. S. Butterworth, S. N. Dzhosyuk, P. R. Huffman, C. E. H. Mattoni, J. M. Doyle, R. Golub, and K. Habicht, Phys. Rev. A 59, 200 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.200
31.
31. R. Seiler, Th. Paul, M. Andrist, and F. Merkt, Rev. Sci. Instrum. 76, 103103 (2005).
http://dx.doi.org/10.1063/1.2081891
32.
32. R. Seiler, U. Hollenstein, G. M. Greetham, and F. Merkt, Chem. Phys. Lett. 346, 201 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00928-9
33.
33. R. Seiler, U. Hollenstein, T. P. Softley, and F. Merkt, J. Chem. Phys. 118, 10024 (2003).
http://dx.doi.org/10.1063/1.1571528
34.
34. U. Hollenstein, R. Seiler, and F. Merkt, J. Phys. B: At. Mol. Opt. Phys. 36, 893 (2003).
http://dx.doi.org/10.1088/0953-4075/36/5/309
35.
35. S. Gerstenkorn, J. Vergès, and J. Chevillard, Atlas du Spectre d'Absorption de la Molécule d'Iode: 11 000–14 000 cm−1 (Laboratoire Aimé-Cotton CNRS II, Orsay, 1982).
36.
36. D. Sprecher, J. Liu, Ch. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 133, 111102 (2010).
http://dx.doi.org/10.1063/1.3483462
37.
37. J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
http://dx.doi.org/10.1063/1.3120443
38.
38. C. R. Mahon, G. R. Janik, and T. F. Gallagher, Phys. Rev. A 41, 3746 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.3746
39.
39. F. Merkt, H. H. Fielding, and T. P. Softley, Chem. Phys. Lett. 202, 153 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85365-U
40.
40. G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 (1972).
http://dx.doi.org/10.1016/0022-2852(72)90064-1
41.
41. F. Merkt and T. P. Softley, Phys. Rev. A 46, 302 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.302
42.
42. J. W. C. Johns and D. W. Lepard, J. Mol. Spectrosc. 55, 374 (1975).
http://dx.doi.org/10.1016/0022-2852(75)90275-1
43.
43. W. A. Chupka, J. Chem. Phys. 98, 4520 (1993).
http://dx.doi.org/10.1063/1.465011
44.
44. F. Merkt and R. N. Zare, J. Chem. Phys. 101, 3495 (1994).
http://dx.doi.org/10.1063/1.467534
45.
45. Ch. Jungen and O. Atabek, J. Chem. Phys. 66, 5584 (1977).
http://dx.doi.org/10.1063/1.433881
46.
46. C. H. Greene and Ch. Jungen, Adv. At. Mol. Phys. 21, 51 (1985).
http://dx.doi.org/10.1016/S0065-2199(08)60141-4
47.
47. S. C. Ross and Ch. Jungen, Phys. Rev. A 49, 4353 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.4353
48.
48. S. C. Ross and Ch. Jungen, Phys. Rev. A 49, 4364 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.4364
49.
49. S. C. Ross and Ch. Jungen, Phys. Rev. A 50, 4618 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.4618
50.
50. S. C. Ross, Ch. Jungen, and A. Matzkin, Can. J. Phys. 79, 561 (2001).
http://dx.doi.org/10.1139/p00-075
51.
51. Ch. Jungen, K. P. Huber, M. Jungen, and G. Stark, J. Chem. Phys. 118, 4517 (2003).
http://dx.doi.org/10.1063/1.1542877
52.
52. A. Osterwalder, A. Wüest, F. Merkt, and Ch. Jungen, J. Chem. Phys. 121, 11810 (2004).
http://dx.doi.org/10.1063/1.1792596
53.
53. M. Glass-Maujean and Ch. Jungen, J. Phys. Chem. A 113, 13124 (2009).
http://dx.doi.org/10.1021/jp902846c
54.
54. Ch. Jungen, “Elements of quantum defect theory,” Handbook of High-Resolution Spectroscopy, edited by M. Quack and F. Merkt (John Wiley & Sons, Ltd., 2011).
55.
55. D. Sprecher, Ch. Jungen, and F. Merkt, J. Phys. Chem. A 117, 9462 (2013).
http://dx.doi.org/10.1021/jp311793t
56.
56. L. Wolniewicz, J. Mol. Spectrosc. 174, 132 (1995).
http://dx.doi.org/10.1006/jmsp.1995.1275
57.
57. W. Kołos and J. Rychlewski, J. Mol. Spectrosc. 177, 146 (1996).
http://dx.doi.org/10.1006/jmsp.1996.0127
58.
58. G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 198, 416 (1999).
http://dx.doi.org/10.1006/jmsp.1999.7975
59.
59. G. Staszewska, J. Phys. Chem. A 105, 2308 (2001).
http://dx.doi.org/10.1021/jp003781z
60.
60.See supplementary material at http://dx.doi.org/10.1063/1.4864002 for tables containing experimental term values of triplet np Rydberg states of He2 taken from the literature and their comparison to MQDT calculations. [Supplementary Material]
61.
61. J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem. Theory Comput. 7, 3105 (2011).
http://dx.doi.org/10.1021/ct200438t
62.
62. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.043005
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/6/10.1063/1.4864002
Loading
/content/aip/journal/jcp/140/6/10.1063/1.4864002
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/6/10.1063/1.4864002
2014-02-11
2016-09-30

Abstract

Photoionization spectra and Rydberg-state-resolved threshold-ionization spectra of the triplet Rydberg states of 4He located in the vicinity of the ionization threshold were recorded from the metastable state. An accuracy of 0.01 cm−1 was achieved for the experimental term values of the observed Rydberg states. The data were combined with spectroscopic data on low-lying triplet and Rydberg states from the literature to derive energy- and internuclear-distance-dependent eigenquantum-defect parameters of multichannel quantum-defect theory (MQDT). The MQDT calculations reproduce the experimental data within their experimental uncertainties and enabled the derivation of potential-energy curves for the lowest triplet Rydberg states ( = 2–5) of He. The eigenquantum-defect parameters describing the  - interaction were found to be larger than 0.002 at the energies corresponding to the high- Rydberg states, so that the  - interaction plays an important role in the autoionization dynamics of Rydberg states with + = 0. By extrapolating the experimental term values of triplet Rydberg states of 4He in the range of principal quantum number between 87 and 110, the positions of the ( + = 0, + = 3) and ( + = 0, + = 5) levels of the ground state of 4 were determined to lie 70.937(3) cm−1 and 198.369(6) cm−1, respectively, above the ( + = 0, + = 1) ground rotational level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/6/1.4864002.html;jsessionid=M8P0krmUyrNKL5wWo4oxKMet.x-aip-live-02?itemId=/content/aip/journal/jcp/140/6/10.1063/1.4864002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/6/10.1063/1.4864002&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/6/10.1063/1.4864002'
Right1,Right2,Right3,