Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/8/10.1063/1.4865107
1.
1. W. J. Baumgardner, J. J. Choi, Y.-F. Lim, and T. Hanrath, J. Am. Chem. Soc. 132, 9519 (2010).
http://dx.doi.org/10.1021/ja1013745
2.
2. C. R. Bealing, W. J. Baumgardner, J. J. Choi, T. Hanrath, and R. G. Hennig, ACS Nano 6, 2118 (2012).
http://dx.doi.org/10.1021/nn3000466
3.
3. D.-H. Ha, M. A. Islam, and R. D. Robinson, Nano Lett. 12, 5122 (2012).
http://dx.doi.org/10.1021/nl3019559
4.
4. D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, and H. D. Abruña, J. Am. Chem. Soc. 132, 17664 (2010).
http://dx.doi.org/10.1021/ja107874u
5.
5. G. Liu, E. Luais, and J. J. Gooding, Langmuir 27, 4176 (2011).
http://dx.doi.org/10.1021/la104373v
6.
6. J. J. Choi, C. R. Bealing, K. Bian, K. J. Hughes, W. Zhang, D.-M. Smilgies, R. G. Hennig, J. R. Engstrom, and T. Hanrath, J. Am. Chem. Soc. 133, 3131 (2011).
http://dx.doi.org/10.1021/ja110454b
7.
7. J. Chen, X. Ye, S. J. Oh, J. M. Kikkawa, C. R. Kagan, and C. B. Murray, ACS Nano 7, 1478 (2013).
http://dx.doi.org/10.1021/nn3052617
8.
8. W.-K. Koh, A. C. Bartnik, F. W. Wise, and C. B. Murray, J. Am. Chem. Soc. 132, 3909 (2010).
http://dx.doi.org/10.1021/ja9105682
9.
9. D. F. Moyano and V. M. Rotello, Langmuir 27, 10376 (2011).
http://dx.doi.org/10.1021/la2004535
10.
10. K. Letchworth-Weaver and T. A. Arias, Phys. Rev. B 86, 075140 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075140
11.
11. K. A. Schwarz, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, and R. G. Hennig, Phys. Rev. B 85, 201102 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.201102
12.
12. J. L. Fattebert and F. Gygi, Int. J. Quantum Chem. 93, 139 (2003).
http://dx.doi.org/10.1002/qua.10548
13.
13. S. A. Petrosyan, A. A. Rigos, and T. A. Arias, J. Phys. Chem. B 109, 15436 (2005).
http://dx.doi.org/10.1021/jp044822k
14.
14. O. Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136, 064102 (2012).
http://dx.doi.org/10.1063/1.3676407
15.
15. D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K. A. Schwarz, and T. A. Arias, Modell. Simul. Mater. Sci. Eng. 21, 074005 (2013).
http://dx.doi.org/10.1088/0965-0393/21/7/074005
16.
16. S. Ismail-Beigi and T. A. Arias, Comput. Phys. Commun. 128, 1 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00072-2
17.
17. R. Sundararaman, D. Gunceler, K. Letchworth-Weaver, and T. A. Arias, JDFTx, 2012, see http://jdftx.sourceforge.net.
18.
18. K. Mathew and R. G. Hennig, Vaspsol: Software Module for Solid/Liquid Interfaces for VASP, 2013, see http://vaspsol.mse.cornell.edu/.
19.
19. S. A. Petrosyan, J.-F. Briere, D. Roundy, and T. A. Arias, Phys. Rev. B 75, 205105 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205105
20.
20. R. Sundararaman and T. Arias, Comput. Phys. Commun. 185, 818825 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.11.013
21.
21. C. J. Cramer and D. G. Truhlar, Acc. Chem. Res. 41, 760 (2008).
http://dx.doi.org/10.1021/ar800019z
22.
22. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
http://dx.doi.org/10.1021/cr9904009
23.
23. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
24.
24. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
25.
25. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
26.
26. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
27.
27. P. Giannozzi, J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
28.
28. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et al., Comput. Mater. Sci. 25, 478 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
29.
29. Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database No. 101, Release 16a, edited by R. D. Johnson III (NIST, Gaithersburg, MD, 2012), see http://cccbdb.nist.gov/.
30.
30. M. Fishman, H. L. Zhuang, K. Mathew, W. Dirschka, and R. G. Hennig, Phys. Rev. B 87, 245402 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245402
31.
31. W. D. Parker, J. W. Wilkins, and R. G. Hennig, Phys. Status Solidi B 248, 267 (2011).
http://dx.doi.org/10.1002/pssb.201046149
32.
32. R. Kumar, S. Pasupathi, B. G. Pollet, and K. Scott, Electrochim. Acta 109, 365 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.07.140
33.
33. S. Billinge, Nature (London) 495, 453 (2013).
http://dx.doi.org/10.1038/495453a
34.
34. D. J. Asunskis, I. L. Bolotin, and L. Hanley, J. Phys. Chem. C 112, 9555 (2008).
http://dx.doi.org/10.1021/jp8037076
35.
35. A. A. R. Watt, D. Blake, J. H. Warner, E. A. Thomsen, E. L. Tavenner, H. Rubinsztein-Dunlop, and P. Meredith, J. Phys. D: Appl. Phys. 38, 2006 (2005).
http://dx.doi.org/10.1088/0022-3727/38/12/023
36.
36. J. D. Patel, F. Mighri, A. Ajji, and T. K. Chaudhuri, Mater. Chem. Phys. 132, 747 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2011.12.006
37.
37. W. J. Baumgardner, K. Whitham, and T. Hanrath, Nano Lett. 13, 3225 (2013).
http://dx.doi.org/10.1021/nl401298s
38.
38. Y. Kim, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. A 113, 9109 (2009).
http://dx.doi.org/10.1021/jp905429p
39.
39. K. Regan, Science 295, 2245 (2002).
http://dx.doi.org/10.1126/science.1068849
40.
40. T. N. Truong and E. V. Stefanovich, J. Phys. Chem. 99, 14700 (1995).
http://dx.doi.org/10.1021/j100040a018
41.
41. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, J. Phys. Chem. 100, 16098 (1996).
http://dx.doi.org/10.1021/jp960488j
42.
42. B. Ensing, E. J. Meijer, P. E. Blöchl, and E. J. Baerends, J. Phys. Chem. A 105, 3300 (2001).
http://dx.doi.org/10.1021/jp003468x
43.
43. M. Frisch, G. Trucks, H. B. Schlegel et al., Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009), available online at www.gaussian.com/g_prod/g09.htm.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/8/10.1063/1.4865107
Loading
/content/aip/journal/jcp/140/8/10.1063/1.4865107
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/8/10.1063/1.4865107
2014-02-26
2016-09-26

Abstract

Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the S2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the S2 reaction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/8/1.4865107.html;jsessionid=nO_RCRjmsPhDU1e_VnSODCY_.x-aip-live-02?itemId=/content/aip/journal/jcp/140/8/10.1063/1.4865107&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/8/10.1063/1.4865107&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4865107'
Right1,Right2,Right3,