Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/8/10.1063/1.4866175
1.
1. A. J. Stone, The Theory of Intermolecular Forces (Oxford University Press, 1996).
2.
2. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers and Physicists (Cambridge University Press, 2005).
3.
3. R. H. French, V. A. Parsegian, R. Podgornik, R. F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M. K. Chaudhury, Y.-m. Chiang, S. Granick et al., Rev. Mod. Phys. 82, 1887 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1887
4.
4. K. Lee, A. K. Kelkkanen, K. Berland, S. Andersson, D. C. Langreth, E. Schröder, P. Hyldgaard, and B. I. Lundqvist, Phys. Rev. B 84, 193408 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.193408
5.
5. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
6.
6. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
7.
7. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
8.
8. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
9.
9. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
10.
10. A. Tkatchenko, L. Romaner, O. T. Hofmann, E. Zojer, C. Ambrosch-Draxl, and M. Scheffler, MRS Bulletin 35, 435 (2010).
http://dx.doi.org/10.1557/mrs2010.581
11.
11. V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.146103
12.
12. J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, Phys. Rev. Lett. 106, 026101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.026101
13.
13. A. K. Kelkkanen, B. I. Lundqvist, and J. K. Nørskov, Phys. Rev. B 83, 113401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.113401
14.
14. M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 81, 081408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.081408
15.
15. K. Toyoda, I. Hamada, K. Lee, S. Yanagisawa, and Y. Morikawa, J. Chem. Phys. 132, 134703 (2010).
http://dx.doi.org/10.1063/1.3373389
16.
16. J. Wellendorff, A. Kelkkanen, J. J. Mortensen, B. I. Lundqvist, and T. Bligaard, Top. Catal. 53, 378 (2010).
http://dx.doi.org/10.1007/s11244-010-9443-6
17.
17. E. Abad, Y. J. Dappe, J. I. Martínez, F. Flores, and J. Ortega, J. Chem. Phys. 134, 044701 (2011).
http://dx.doi.org/10.1063/1.3521271
18.
18. W. Liu, J. Carrasco, B. Santra, A. Michaelides, M. Scheffler, and A. Tkatchenko, Phys. Rev. B 86, 245405 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.245405
19.
19. K. Lee, K. Berland, M. Yoon, S. Andersson, E. Schröder, P. Hyldgaard, and B. I. Lundqvist, J. Phys.: Condens. Matter 24, 424213 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424213
20.
20. H. Yildirim, T. Greber, and A. Kara, J. Phys. Chem. C 117, 20572 (2013).
http://dx.doi.org/10.1021/jp404487z
21.
21. I. Hamada, K. Lee, and Y. Morikawa, Phys. Rev. B 81, 115452 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115452
22.
22. T. Kumagai, H. Okuyama, S. Hatta, T. Aruga, and I. Hamada, J. Chem. Phys. 134, 024703 (2011).
http://dx.doi.org/10.1063/1.3525645
23.
23. A. Poissier, S. Ganeshan, and M. V. Fernández-Serra, Phys. Chem. Chem. Phys. 13, 3375 (2011).
http://dx.doi.org/10.1039/c0cp00994f
24.
24. K. Tonigold and A. Gross, J. Comput. Chem. 33, 695 (2012).
http://dx.doi.org/10.1002/jcc.22900
25.
25. R. Nadler and J. F. Sanz, J. Chem. Phys. 137, 114709 (2012).
http://dx.doi.org/10.1063/1.4752235
26.
26. J. Carrasco, J. Klimeš, and A. Michaelides, J. Chem. Phys. 138, 024708 (2013).
http://dx.doi.org/10.1063/1.4773901
27.
27. J. L. F. Da Silva, C. Stampfl, and M. Scheffler, Phys. Rev. Lett. 90, 066104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.066104
28.
28. D. L. Chen, W. A. Al-Saidi, and J. K. Johnson, Phys. Rev. B 84, 241405 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.241405
29.
29. P. L. Silvestrelli, A. Ambrosetti, S. Grubisic, and F. Ancilotto, Phys. Rev. B 85, 165405 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165405
30.
30. I. Hamada and M. Tsukada, Phys. Rev. B 83, 245437 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245437
31.
31. C. Busse, P. Lazic, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc, R. Brako, A. T. N'Diaye, S. Blugel et al., Phys. Rev. Lett. 107, 036101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.036101
32.
32. F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimeš, J. Harl, and G. Kresse, Phys. Rev. B 84, 201401 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.201401
33.
33. X. Li, J. Feng, E. Wang, S. Meng, J. Klimeš, and A. Michaelides, Phys. Rev. B 85, 085425 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085425
34.
34. S. M. Kozlov, F. Viñes, and A. Görling, J. Phys. Chem. C 116, 7360 (2012).
http://dx.doi.org/10.1021/jp210667f
35.
35. M. A. F. Addato, A. A. Rubert, G. A. Benítez, M. H. Fonticelli, J. Carrasco, P. Carro, and R. Salvarezza, J. Phys. Chem. C 115, 17788 (2011).
http://dx.doi.org/10.1021/jp201390m
36.
36. N. Atodiresei, V. Caciuc, P. Lazić, and S. Blügel, Phys. Rev. Lett. 102, 136809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136809
37.
37. W. Liu, A. Savara, X. Ren, W. Ludwig, K.-H. Dostert, S. Schauermann, A. Tkatchenko, H.-J. Freund, and M. Scheffler, J. Phys. Chem. Lett. 3, 582 (2012).
http://dx.doi.org/10.1021/jz300117g
38.
38. W. Liu, S. N. Filimonov, J. Carrasco, and A. Tkatchenko, Nat. Commun. 4, 2569 (2013).
http://dx.doi.org/10.1038/ncomms3569
39.
39. W. Liu, V. G. Ruiz, G.-X. Zhang, B. Santra, X. Ren, M. Scheffler, and A. Tkatchenko, New J. Phys. 15, 053046 (2013).
http://dx.doi.org/10.1088/1367-2630/15/5/053046
40.
40. E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
41.
41. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
42.
42. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
43.
43. F. S. Tautz, Prog. Surf. Sci. 82, 479 (2007).
http://dx.doi.org/10.1016/j.progsurf.2007.09.001
44.
44. P. Gomez-Romero, Adv. Mater. 13, 163 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
45.
45. S. J. Jenkins, Proc. R. Soc. A 465, 2949 (2009).
http://dx.doi.org/10.1098/rspa.2009.0119
46.
46. L. Kronik and N. Koch, MRS Bull. 35, 417 (2010).
http://dx.doi.org/10.1557/mrs2010.578
47.
47. Y. P. Tan, S. Khatua, S. J. Jenkins, J. Q. Yu, J. B. Spencer, and D. A. King, Surf. Sci. 589, 173 (2005).
http://dx.doi.org/10.1016/j.susc.2005.05.056
48.
48. P. Sautet and C. Joachim, Chem. Phys. Lett. 185, 23 (1991).
http://dx.doi.org/10.1016/0009-2614(91)80133-I
49.
49. P. Sautet and M.-L. Bocquet, Surf. Sci. 304, L445 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91325-0
50.
50. P. Sautet and M.-L. Bocquet, Phys. Rev. B 53, 4910 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.4910
51.
51. C. Morin, D. Simon, and P. Sautet, J. Phys. Chem. B 107, 2995 (2003).
http://dx.doi.org/10.1021/jp026950j
52.
52. C. Morin, D. Simon, and P. Sautet, J. Phys. Chem. B 108, 5653 (2004).
http://dx.doi.org/10.1021/jp0373503
53.
53. C. Morin, D. Simon, and P. Sautet, Surf. Sci. 600, 1339 (2006).
http://dx.doi.org/10.1016/j.susc.2006.01.033
54.
54. X. Zhou, M. Castro, and J. White, Surf. Sci. 238, 215 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90079-N
55.
55. A. Wander, G. Held, R. Q. Hwang, G. S. Blackman, M. L. Xu, P. de Andres, M. A. Van Hove, and G. A. Somorjai, Surf. Sci. 249, 21 (1991).
http://dx.doi.org/10.1016/0039-6028(91)90830-L
56.
56. P. S. Weiss and D. M. Eigler, Phys. Rev. Lett. 71, 3139 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3139
57.
57. M. Xi, M. Yang, S. Jo, B. Bent, and P. Stevens, J. Chem. Phys. 101, 9122 (1994).
http://dx.doi.org/10.1063/1.468041
58.
58. S. Stranick, M. Kamna, and P. Weiss, Surf. Sci. 338, 41 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00529-3
59.
59. D. Syomin, J. Kim, B. E. Koel, and G. B. Ellison, J. Phys. Chem. B 105, 8387 (2001).
http://dx.doi.org/10.1021/jp012069e
60.
60. H. Ihm, H. M. Ajo, J. M. Gottfried, P. Bera, and C. T. Campbell, J. Phys. Chem. B 108, 14627 (2004).
http://dx.doi.org/10.1021/jp040159o
61.
61. B. A. Mantooth, E. C. H. Sykes, P. Han, A. M. Moore, Z. J. Donhauser, V. H. Crespi, and P. S. Weiss, J. Phys. Chem. C 111, 6167 (2007).
http://dx.doi.org/10.1021/jp0663558
62.
62. E. Abad, J. Ortega, Y. J. Dappe, and F. Flores, Appl. Phys. A 95, 119 (2009).
http://dx.doi.org/10.1007/s00339-008-5010-4
63.
63. K. Toyoda, Y. Nakano, I. Hamada, K. Lee, S. Yanagisawa, and Y. Morikawa, Surf. Sci. 603, 2912 (2009).
http://dx.doi.org/10.1016/j.susc.2009.07.039
64.
64. E. Zaremba and W. Kohn, Phys. Rev. B 13, 2270 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.2270
65.
65. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.06.022
66.
66. V. Havu, P. Havu, V. Blum, and M. Scheffler, J. Comput. Phys. 228, 8367 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.08.008
67.
67. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
68.
68. G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
69.
69. J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.16067
70.
70. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
71.
71. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
72.
72. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
73.
73. G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.096102
74.
74. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
75.
75. M. Saeys, M. F. Reyniers, G. B. Marin, and M. Neurock, J. Phys. Chem. B 106, 7489 (2002).
http://dx.doi.org/10.1021/jp0201231
76.
76. A. Puzder, M. Dion, and D. C. Langreth, J. Chem. Phys. 124, 164105 (2006).
http://dx.doi.org/10.1063/1.2189229
77.
77. E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Phys. Rev. B 76, 155425 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155425
78.
78. I. Hamada, J. Chem. Phys. 133, 214503 (2010).
http://dx.doi.org/10.1063/1.3507916
79.
79. L. W. Bruch, R. D. Diehl, and J. A. Venables, Rev. Mod. Phys. 79, 1381 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1381
80.
80. L. W. Bruch, M. W. Cole, and E. Zaremba, Physical Adsorption: Forces and Phenomena (Dover Publications, 2009).
81.
81. J. L. F. Da Silva, C. Stampfl, and M. Scheffler, Phys. Rev. B 72, 075424 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075424
82.
82. A. Ambrosetti and P. L. Silvestrelli, Phys. Rev. B 85, 073101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.073101
83.
83. O. A. Vydrov and T. Van Voorhis, Phys. Rev. A 81, 062708 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062708
84.
84. P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085104
85.
85. C. T. Campbell and J. R. V. Sellers, J. Am. Chem. Soc. 134, 18109 (2012).
http://dx.doi.org/10.1021/ja3080117
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/8/10.1063/1.4866175
Loading
/content/aip/journal/jcp/140/8/10.1063/1.4866175
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/8/10.1063/1.4866175
2014-02-26
2016-12-05

Abstract

Exploring the role of van der Waals (vdW) forces on the adsorption of molecules on extended metal surfaces has become possible in recent years thanks to exciting developments in density functional theory (DFT). Among these newly developed vdW-inclusive methods, interatomic vdW approaches that account for the nonlocal screening within the bulk [V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett.108, 146103 (2012)] and improved nonlocal functionals [J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter22, 022201 (2010)] have emerged as promising candidates to account efficiently and accurately for the lack of long-range vdW forces in most popular DFT exchange-correlation functionals. Here we have used these two approaches to compute benzene adsorption on a range of close-packed (111) surfaces upon which it either physisorbs (Cu, Ag, and Au) or chemisorbs (Rh, Pd, Ir, and Pt). We have thoroughly compared the performance between the two classes of vdW-inclusive methods and when available compared the results obtained with experimental data. By examining the computed adsorption energies, equilibrium distances, and binding curves we conclude that both methods allow for an accurate treatment of adsorption at equilibrium adsorbate-substrate distances. To this end, explicit inclusion of electrodynamic screening in the interatomic vdW scheme and optimized exchange functionals in the case of nonlocal vdW density functionals is mandatory. Nevertheless, some discrepancies are found between these two classes of methods at large adsorbate-substrate separations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/8/1.4866175.html;jsessionid=xIPgfKjJ7bcH8nkFC_bSSA31.x-aip-live-03?itemId=/content/aip/journal/jcp/140/8/10.1063/1.4866175&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/8/10.1063/1.4866175&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4866175'
Right1,Right2,Right3,