Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/8/10.1063/1.4866795
1.
1. R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
2.
2. C. Riplinger and F. Neese, J. Chem. Phys. 138, 034106 (2013).
http://dx.doi.org/10.1063/1.4773581
3.
3. F. Neese, T. Petrenko, D. Ganyushin, and G. Olbrich, Coord. Chem. Rev. 251, 288 (2007).
http://dx.doi.org/10.1016/j.ccr.2006.05.019
4.
4. F. Neese, Coord. Chem. Rev. 253, 526 (2009).
http://dx.doi.org/10.1016/j.ccr.2008.05.014
5.
5. D. Datta and M. Nooijen, J. Chem. Phys. 137, 204107 (2012).
http://dx.doi.org/10.1063/1.4766361
6.
6. O. Demel, D. Datta, and M. Nooijen, J. Chem. Phys. 138, 134108 (2013).
http://dx.doi.org/10.1063/1.4796523
7.
7. D. Mukherjee, Chem. Phys. Lett. 274, 561 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00714-8
8.
8. W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997).
http://dx.doi.org/10.1063/1.474405
9.
9. L. Kong, M. Nooijen, and D. Mukherjee, J. Chem. Phys. 132, 234107 (2010).
http://dx.doi.org/10.1063/1.3439395
10.
10. M. Nooijen, J. Chem. Phys. 104, 2638 (1996).
http://dx.doi.org/10.1063/1.470988
11.
11. L. Kong, K. R. Shamasundar, O. Demel, and M. Nooijen, J. Chem. Phys. 130, 114101 (2009).
http://dx.doi.org/10.1063/1.3089302
12.
12. D. Datta, L. Kong, and M. Nooijen, J. Chem. Phys. 134, 214116 (2011).
http://dx.doi.org/10.1063/1.3592494
13.
13. M. Nooijen and V. Lotrich, J. Mol. Struct. (Theochem) 547, 253 (2001).
http://dx.doi.org/10.1016/S0166-1280(01)00475-4
14.
14. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
http://dx.doi.org/10.1063/1.443164
15.
15. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
16.
16. M. Nooijen, K. R. Shamasundar, and D. Mukherjee, Mol. Phys. 103, 2277 (2005).
http://dx.doi.org/10.1080/00268970500083952
17.
17. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
18.
18. F. Neese, “The ORCA program system,” WIREs Comput. Mol. Sci. 2, 7378 (2012).
http://dx.doi.org/10.1002/wcms.81
19.
19. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
20.
20. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
http://dx.doi.org/10.1063/1.3484283
21.
21. I. Lindgren, Int. J. Quant. Chem. 14, 33 (1978).
http://dx.doi.org/10.1002/qua.560140804
22.
22. L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32, 725 (1985).
http://dx.doi.org/10.1103/PhysRevA.32.725
23.
23. M. Nooijen and R. J. Bartlett, J. Chem. Phys. 104, 2652 (1996).
http://dx.doi.org/10.1063/1.471010
24.
24. M. Nooijen and R. J. Bartlett, J. Chem. Phys. 106, 6441 (1997).
http://dx.doi.org/10.1063/1.474000
25.
25. M. Nooijen and R. J. Bartlett, J. Chem. Phys. 107, 6812 (1997).
http://dx.doi.org/10.1063/1.474922
26.
26. D. Mukherjee and S. Pal, Adv. Quant. Chem. 20, 291 (1989).
http://dx.doi.org/10.1016/S0065-3276(08)60629-2
27.
27. J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
http://dx.doi.org/10.1063/1.464746
28.
28. H. J. Monkhorst, Int. J. Quant. Chem. 12, 421 (1977).
http://dx.doi.org/10.1002/qua.560120850
29.
29. D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39, 325 (1979).
http://dx.doi.org/10.1016/0301-0104(79)80153-6
30.
30. H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).
http://dx.doi.org/10.1063/1.458814
31.
31. M. Nooijen, Spectrochim. Acta A 55, 539 (1999).
http://dx.doi.org/10.1016/S1386-1425(98)00261-3
32.
32. M. Nooijen and V. Lotrich, J. Chem. Phys. 113, 494 (2000).
http://dx.doi.org/10.1063/1.481828
33.
33. S. Hirata, J. Phys. Chem. A 107, 9887 (2003).
http://dx.doi.org/10.1021/jp034596z
34.
34. M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001).
http://dx.doi.org/10.1063/1.1383290
35.
35. M. Kállay, P. G. Szalay, and P. R. Surján, J. Chem. Phys. 117, 980 (2002).
http://dx.doi.org/10.1063/1.1483856
36.
36. M. Kállay, J. Gauss, and P. G. Szalay, J. Chem. Phys. 119, 2991 (2003).
http://dx.doi.org/10.1063/1.1589003
37.
37. A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov, Mol. Phys. 104, 211 (2006).
http://dx.doi.org/10.1080/00268970500275780
38.
38. D. Datta and J. Gauss, J. Chem. Theory Comput. 9, 2639 (2013).
http://dx.doi.org/10.1021/ct400216h
39.
39. M. Nooijen and K. R. Shamasundar, Collect. Czech. Chem. Commun. 70, 1082 (2005).
http://dx.doi.org/10.1135/cccc20051082
40.
40. T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006).
http://dx.doi.org/10.1063/1.2196410
41.
41. T. Yanai and G. K.-L. Chan, J. Chem. Phys. 127, 104107 (2007).
http://dx.doi.org/10.1063/1.2761870
42.
42. ACES II is a program product of Quantum Theory Project, University of Florida, J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S. A. Perera, P. G. Szalay, W. J. Lauderdale, S. R. Gwaltney, S. Beck, A. Balková, D. E. Bernholdt, K.-K. Baeck, P. Rozyczko, H. Sekino, C. Huber, and R. J. Bartlett. Integral packages included are VMOL (J. Almlöf and P. R. Taylor); VPROPS (P. R. Taylor); and ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Joergensen, J. Olsen, and P. R. Taylor).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/8/10.1063/1.4866795
Loading
/content/aip/journal/jcp/140/8/10.1063/1.4866795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/8/10.1063/1.4866795
2014-02-28
2016-09-25

Abstract

The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1, 1, 2, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective subspaces (inactive, active, external). Applications to first row transition metal atoms (Cr, Mn, and Fe) are presented yielding results for up to 524 electronic states (for Cr) with an rms error compared to experiment of about 0.05 eV. The accuracy of the MREOM family of methods is closely related to its favorable extensivity properties as illustrated by calculations on the O–O dimer. The computational costs of the transformation steps in MREOM are comparable to those of closed-shell Coupled Cluster Singles and Doubles (CCSD) approach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/8/1.4866795.html;jsessionid=xDajeszo4SrC19SbHRfRyINx.x-aip-live-06?itemId=/content/aip/journal/jcp/140/8/10.1063/1.4866795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/8/10.1063/1.4866795&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4866795'
Right1,Right2,Right3,