Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/8/10.1063/1.4866808
1.
1. C. Robinson, Mol. Cryst. 1, 467 (1966);
http://dx.doi.org/10.1080/15421406608083287
1.F. Livolant and A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996);
http://dx.doi.org/10.1016/S0079-6700(96)00016-0
1.H. H. Strey, J. Wang, R. Podgornik, A. Rupprecht, L. Yu, V. A. Parsegian, and E. B. Sirota, Phys. Rev. Lett. 84, 3105 (2000);
http://dx.doi.org/10.1103/PhysRevLett.84.3105
1.M. M. Guiraud-Guille, G. Mosser, and E. Belamie, Curr. Opin. Colloid. Interface Sci. 13, 303 (2008);
http://dx.doi.org/10.1016/j.cocis.2008.03.002
1.G. Zanchetta, F. Giavazzi, M. Nakata, M. Buscaglia, R. Cerbino, N. A. Clark, and T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 107, 17497 (2010).
http://dx.doi.org/10.1073/pnas.1011199107
2.
2. A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79, 943 (2007);
http://dx.doi.org/10.1103/RevModPhys.79.943
2.D. Marenduzzo, C. Micheletti, and E. Orlandini, J. Phys.: Condens. Matter 22, 283102 (2010).
http://dx.doi.org/10.1088/0953-8984/22/28/283102
3.
3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
4.
4. J. P. Straley, Phys. Rev. A 14, 1835 (1976);
http://dx.doi.org/10.1103/PhysRevA.14.1835
4.F. Tombolato and A. Ferrarini, J. Chem. Phys. 122, 054908 (2005);
http://dx.doi.org/10.1063/1.1839859
4.H. H. Wensink and G. Jackson, J. Phys.: Condens. Matter 23, 194107 (2011).
http://dx.doi.org/10.1088/0953-8984/23/19/194107
5.
5. E. Barry, Z. Hensel, Z. Dogic, M. Shribak, and R. Oldenbourg, Phys. Rev. Lett. 96, 018305 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.018305
6.
6. R. B. Meyer, Appl. Phys. Lett. 12, 281 (1968);
http://dx.doi.org/10.1063/1.1651992
6.R. B. Meyer, Appl. Phys. Lett. 14, 208 (1969).
http://dx.doi.org/10.1063/1.1652780
7.
7. R. D. Kamien, J. Phys. II 6, 461 (1996).
http://dx.doi.org/10.1051/jp2:1996192
8.
8. E. Frezza, A. Ferrarini, H. B. Kolli, A. Giacometti, and G. Cinacchi, J. Chem. Phys. 138, 164906 (2013).
http://dx.doi.org/10.1063/1.4802005
9.
9. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987);
9.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego, 2002).
10.
10. P. Bolhuis and D. Frenkel, J. Chem. Phys. 106, 666 (1997).
http://dx.doi.org/10.1063/1.473404
11.
11. T. S. Hudson and P. Harrowell, J. Phys. Chem. B 112, 8139 (2008);
http://dx.doi.org/10.1021/jp802912a
11.N. T. Elias and T. S. Hudson, J. Phys.: Conf. Ser. 402, 012005 (2012).
http://dx.doi.org/10.1088/1742-6596/402/1/012005
12.
12. F. Manna, V. Lorman, R. Podgornik, and B. Zeks, Phys. Rev. E 75, 030901(R) (2007).
http://dx.doi.org/10.1103/PhysRevE.75.030901
13.
13. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
14.
14. J. D. Parsons, Phys. Rev. A 19, 1225 (1979);
http://dx.doi.org/10.1103/PhysRevA.19.1225
14.S. D. Lee, J. Chem. Phys. 87, 4972 (1987).
http://dx.doi.org/10.1063/1.452811
15.
15. D. A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000).
16.
16. G. Cinacchi, L. Mederos, and E. Velasco, J. Chem. Phys. 121, 3854 (2004).
http://dx.doi.org/10.1063/1.1774153
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/8/10.1063/1.4866808
Loading
/content/aip/journal/jcp/140/8/10.1063/1.4866808
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/8/10.1063/1.4866808
2014-02-26
2016-09-29

Abstract

Evidence of a special chiral nematic phase is provided using numerical simulation and Onsager theory for systems of hard helical particles. This phase appears at the high density end of the nematic phase, when helices are well aligned, and is characterized by the C symmetry axes of the helices spiraling around the nematic director with periodicity equal to the particle pitch. This coupling between translational and rotational degrees of freedom allows a more efficient packing and hence an increase of translational entropy. Suitable order parameters and correlation functions are introduced to identify this screw-like phase, whose main features are then studied as a function of radius and pitch of the helical particles. Our study highlights the physical mechanism underlying a similar ordering observed in colloidal helical flagella[E. Barry, Z. Hensel, Z. Dogic, M. Shribak, and R. Oldenbourg, Phys. Rev. Lett.96, 018305 (2006)] and raises the question of whether it could be observed in other helical particle systems, such as DNA, at sufficiently high densities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/8/1.4866808.html;jsessionid=RB2_DeSDmP-3ghmBHgYy3Hmq.x-aip-live-06?itemId=/content/aip/journal/jcp/140/8/10.1063/1.4866808&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/8/10.1063/1.4866808&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/8/10.1063/1.4866808'
Right1,Right2,Right3,