1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Perspective: Bimolecular chemical reaction dynamics in liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/140/9/10.1063/1.4866761
1.
1. F. F. Crim, Faraday Discuss. 157, 926 (2012).
http://dx.doi.org/10.1039/c2fd20123b
2.
2. C. G. Elles and F. F. Crim, Annu. Rev. Phys. Chem. 57(1), 273302 (2006).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104538
3.
3. J. T. Hynes, Annu. Rev. Phys. Chem. 36, 573597 (1985).
http://dx.doi.org/10.1146/annurev.pc.36.100185.003041
4.
4. G. A. Voth and R. M. Hochstrasser, J. Phys. Chem. 100(31), 1303413049 (1996).
http://dx.doi.org/10.1021/jp960317e
5.
5. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).
6.
6. R. D. Levine, Molecular Reaction Dynamics (Cambridge University Press, Cambridge, 2005).
7.
7. M. Brouard and C. Vallance, Tutorials in Molecular Reaction Dynamics (Royal Society of Chemistry, Cambridge, 2010).
8.
8. S. J. Greaves, R. A. Rose, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 12(32), 91299143 (2010).
http://dx.doi.org/10.1039/c001233e
9.
9. S. C. Althorpe and D. C. Clary, Annu. Rev. Phys. Chem. 54, 493529 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103750
10.
10. D. W. Chandler and P. L. Houston, J. Chem. Phys. 87(2), 14451447 (1987).
http://dx.doi.org/10.1063/1.453276
11.
11. A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68(9), 34773484 (1997).
http://dx.doi.org/10.1063/1.1148310
12.
12. G. Czakó and J. M. Bowman, Science 334(6054), 343346 (2011).
http://dx.doi.org/10.1126/science.1208514
13.
13. W. A. Alexander, J. M. Zhang, V. J. Murray, G. M. Nathanson, and T. K. Minton, Faraday Discuss. 157, 355374 (2012).
http://dx.doi.org/10.1039/c2fd20034a
14.
14. B. G. Perkins and D. J. Nesbitt, J. Phys. Chem. A 114(3), 13981410 (2010).
http://dx.doi.org/10.1021/jp907022u
15.
15. C. Waring, P. A. J. Bagot, M. L. Costen, and K. G. McKendrick, J. Phys. Chem. Lett. 2(1), 1218 (2011).
http://dx.doi.org/10.1021/jz1013032
16.
16. A. M. Zolot, P. J. Dagdigian, and D. J. Nesbitt, J. Chem. Phys. 129(19), 194705 (2008).
http://dx.doi.org/10.1063/1.2973630
17.
17. N. Henriksen and F. Y. Hansen, Theories of Molecular Reaction Dynamics (Oxford University Press, Oxford, 2008).
18.
18. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006).
19.
19. J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. 45, 519555 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.002511
20.
20. D. Raftery, E. Gooding, A. Romanovsky, and R. M. Hochstrasser, J. Chem. Phys. 101(10), 85728579 (1994).
http://dx.doi.org/10.1063/1.468052
21.
21. L. R. Copeland, F. Mohammad, M. Zahedi, D. H. Volman, and W. M. Jackson, J. Chem. Phys. 96(8), 58175826 (1992).
http://dx.doi.org/10.1063/1.462681
22.
22. V. R. Morris, F. Mohammad, L. Valdry, and W. M. Jackson, Chem. Phys. Lett. 220(6), 448454 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00212-6
23.
23. G. A. Bethardy, F. J. Northrup, and R. G. Macdonald, J. Chem. Phys. 102(20), 79667982 (1995).
http://dx.doi.org/10.1063/1.468995
24.
24. G. A. Bethardy, F. J. Northrup, and R. G. Macdonald, J. Chem. Phys. 105(11), 45334549 (1996).
http://dx.doi.org/10.1063/1.472537
25.
25. S. J. Greaves, R. A. Rose, T. A. A. Oliver, D. R. Glowacki, M. N. R. Ashfold, J. N. Harvey, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and A. J. Orr-Ewing, Science 331(6023), 14231426 (2011).
http://dx.doi.org/10.1126/science.1197796
26.
26. A. J. Orr-Ewing, D. R. Glowacki, S. J. Greaves, and R. A. Rose, J. Phys. Chem. Lett. 2(10), 11391144 (2011).
http://dx.doi.org/10.1021/jz2002716
27.
27. R. A. Rose, S. J. Greaves, F. Abou-Chahine, D. R. Glowacki, T. A. A. Oliver, M. N. R. Ashfold, I. P. Clark, G. M. Greetham, M. Towrie, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys. 14(30), 1042410437 (2012).
http://dx.doi.org/10.1039/c2cp40158d
28.
28. R. A. Rose, S. J. Greaves, T. A. A. Oliver, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and A. J. Orr-Ewing, J. Chem. Phys. 134(24), 244503 (2011).
http://dx.doi.org/10.1063/1.3603966
29.
29. A. C. Crowther, S. L. Carrier, T. J. Preston, and F. F. Crim, J. Phys. Chem. A 112(47), 1208112089 (2008).
http://dx.doi.org/10.1021/jp8064079
30.
30. A. C. Crowther, S. L. Carrier, T. J. Preston, and F. F. Crim, J. Phys. Chem. A 113(16), 37583764 (2009).
http://dx.doi.org/10.1021/jp8084099
31.
31. L. Sheps, A. C. Crowther, S. L. Carrier, and F. F. Crim, J. Phys. Chem. A 110(9), 30873092 (2006).
http://dx.doi.org/10.1021/jp0543835
32.
32. L. Sheps, A. C. Crowther, C. G. Elles, and F. F. Crim, J. Phys. Chem. A 109(19), 42964302 (2005).
http://dx.doi.org/10.1021/jp051072l
33.
33. M. Tachiya, Radiation Phys. Chem. 21(1–2), 167175 (1983).
http://dx.doi.org/10.1016/0146-5724(83)90143-7
34.
34. Y. L. Chen and M. C. Heaven, J. Chem. Phys. 109(13), 51715174 (1998).
http://dx.doi.org/10.1063/1.477132
35.
35. Y. L. Chen and M. C. Heaven, J. Chem. Phys. 109(7), 28082813 (1998).
http://dx.doi.org/10.1063/1.476849
36.
36. Y. L. Chen and M. C. Heaven, J. Chem. Phys. 112(17), 74167424 (2000).
http://dx.doi.org/10.1063/1.481342
37.
37. S. Fei and M. C. Heaven, J. Chem. Phys. 98(1), 753756 (1993).
http://dx.doi.org/10.1063/1.464622
38.
38. J. Han, M. C. Heaven, and U. Schnupf, J. Chem. Phys. 128(22), 224309 (2008).
http://dx.doi.org/10.1063/1.2936123
39.
39. J. D. Han, M. C. Heaven, U. Schnupf, and M. H. Alexander, J. Chem. Phys. 128(10), 104308 (2008).
http://dx.doi.org/10.1063/1.2834932
40.
40. A. L. Kaledin and M. C. Heaven, Chem. Phys. Lett. 347(1–3), 199204 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01038-7
41.
41. Y. M. Lin and M. C. Heaven, J. Chem. Phys. 94(8), 57655768 (1991).
http://dx.doi.org/10.1063/1.460459
42.
42. J. M. Beames, B. A. O’Donnell, M. Ting, M. I. Lester, and T. A. Stephenson, J. Chem. Phys. 134(18), 184308 (2011).
http://dx.doi.org/10.1063/1.3586810
43.
43. B. A. O’Donnell, J. M. Beames, and M. I. Lester, J. Chem. Phys. 136(23), 234303 (2012).
http://dx.doi.org/10.1063/1.4723694
44.
44. B. A. O’Donnell, J. M. Beames, and M. I. Lester, J. Chem. Phys. 136(23), 234304 (2012).
http://dx.doi.org/10.1063/1.4723696
45.
45. J. Chateauneuf, J. Org. Chem. 64, 10541055 (1999).
http://dx.doi.org/10.1021/jo981947a
46.
46. J. E. Chateauneuf, Chem. Phys. Lett. 164(6), 577580 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85261-3
47.
47. J. E. Chateauneuf, J. Am. Chem. Soc. 112(1), 442444 (1990).
http://dx.doi.org/10.1021/ja00157a066
48.
48. W. M. Kwok, C. S. Ma, A. W. Parker, D. Phillips, M. Towrie, P. Matousek, and D. L. Phillips, J. Chem. Phys. 113(17), 74717478 (2000).
http://dx.doi.org/10.1063/1.1313787
49.
49. W. M. Kwok, C. S. Ma, A. W. Parker, D. Phillips, M. Towrie, P. Matousek, and D. L. Phillips, J. Phys. Chem. A 107(15), 26242628 (2003).
http://dx.doi.org/10.1021/jp021611b
50.
50. W. M. Kwok, C. S. Ma, A. W. Parker, D. Phillips, M. Towrie, P. Matousek, X. M. Zheng, and D. L. Phillips, J. Chem. Phys. 114(17), 75367543 (2001).
http://dx.doi.org/10.1063/1.1362178
51.
51. W. M. Kwok, C. S. Ma, D. Phillips, A. W. Parker, M. Towrie, P. Matousek, and D. L. Phillips, Chem. Phys. Lett. 341(3–4), 292298 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00491-2
52.
52. W. M. Kwok and D. L. Phillips, Chem. Phys. Lett. 235(3–4), 260267 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00122-K
53.
53. Y. L. Li, D. M. Chen, D. Q. Wang, and D. L. Phillips, J. Org. Chem. 67(12), 42284235 (2002).
http://dx.doi.org/10.1021/jo011163o
54.
54. Y. L. Li and D. L. Phillips, Chem. Phys. Lett. 349(3–4), 291298 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01197-6
55.
55. Y. L. Li, D. Wang, and D. L. Phillips, J. Chem. Phys. 117(17), 79317941 (2002).
http://dx.doi.org/10.1063/1.1511724
56.
56. X. M. Zheng, C. W. Lee, Y. L. Li, W. H. Fang, and D. L. Phillips, J. Chem. Phys. 114(19), 83478356 (2001).
http://dx.doi.org/10.1063/1.1367391
57.
57. X. M. Zheng and D. L. Phillips, J. Chem. Phys. 113(8), 31943203 (2000).
http://dx.doi.org/10.1063/1.1286920
58.
58. X. M. Zheng and D. L. Phillips, J. Phys. Chem. A 104(29), 68806886 (2000).
http://dx.doi.org/10.1021/jp000947n
59.
59. P. Z. El-Khoury, L. George, A. Kalume, S. A. Reid, B. S. Ault, and A. N. Tarnovsky, J. Chem. Phys. 132(12), 124501 (2010).
http://dx.doi.org/10.1063/1.3357728
60.
60. P. Z. El-Khoury, W. M. Kwok, X. G. Guan, C. S. Ma, D. L. Phillips, and A. N. Tarnovsky, ChemPhysChem 10(11), 18951900 (2009).
http://dx.doi.org/10.1002/cphc.200900122
61.
61. P. Z. El-Khoury, M. Olivucci, and A. N. Tarnovsky, Chem. Phys. Lett. 462(4–6), 192195 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.07.028
62.
62. S. K. Pal, A. S. Mereshchenko, E. V. Butaeva, P. Z. El-Khoury, and A. N. Tarnovsky, J. Chem. Phys. 138(12), 124501 (2013).
http://dx.doi.org/10.1063/1.4789268
63.
63. S. K. Pal, A. S. Mereshchenko, P. Z. El-Khoury, and A. N. Tarnovsky, Chem. Phys. Lett. 507(1–3), 6973 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.046
64.
64. A. N. Tarnovsky, I. Pascher, and T. Pascher, J. Phys. Chem. A 111(46), 1181411817 (2007).
http://dx.doi.org/10.1021/jp073917u
65.
65. T. J. Preston, M. Dutta, B. J. Esselman, A. Kalume, L. George, R. J. McMahon, S. A. Reid, and F. F. Crim, J. Chem. Phys. 135(11), 114503 (2011).
http://dx.doi.org/10.1063/1.3633697
66.
66. T. J. Preston, M. A. Shaloski, and F. F. Crim, J. Phys. Chem. A 117(14), 28992907 (2013).
http://dx.doi.org/10.1021/jp310737d
67.
67. F. Abou-Chahine, T. J. Preston, G. T. Dunning, A. J. Orr-Ewing, G. M. Greetham, I. P. Clark, M. Towrie, and S. A. Reid, J. Phys. Chem. A 117, 1338813398 (2013).
http://dx.doi.org/10.1021/jp406687x
68.
68. S. L. Carrier, T. J. Preston, M. Dutta, A. C. Crowther, and F. F. Crim, J. Phys. Chem. A 114(3), 15481555 (2010).
http://dx.doi.org/10.1021/jp908725t
69.
69. D. R. Glowacki, A. J. Orr-Ewing, and J. N. Harvey, J. Chem. Phys. 134(21), 214508 (2011).
http://dx.doi.org/10.1063/1.3595259
70.
70. D. R. Glowacki, R. A. Rose, S. J. Greaves, A. J. Orr-Ewing, and J. N. Harvey, Nat. Chem. 3(11), 850855 (2011).
http://dx.doi.org/10.1038/nchem.1154
71.
71. B. P. Fingerhut, C. F. Sailer, J. Ammer, E. Riedle, and R. de Vivie-Riedle, J. Phys. Chem. A 116(46), 1106411074 (2012).
http://dx.doi.org/10.1021/jp300986t
72.
72. I. Benjamin, J. Chem. Phys. 103(7), 24592471 (1995).
http://dx.doi.org/10.1063/1.470695
73.
73. N. Winter, I. Chorny, J. Vieceli, and I. Benjamin, J. Chem. Phys. 119(4), 21272143 (2003).
http://dx.doi.org/10.1063/1.1585019
74.
74. J. Vieceli, I. Chorny, and I. Benjamin, J. Chem. Phys. 115(10), 48194828 (2001).
http://dx.doi.org/10.1063/1.1388196
75.
75. D. R. Glowacki, R. Lightfoot, and J. N. Harvey, Mol. Phys. 111(5), 631640 (2013).
http://dx.doi.org/10.1080/00268976.2013.780100
76.
76. D. R. Glowacki, C. H. Liang, S. P. Marsden, J. N. Harvey, and M. J. Pilling, J. Am. Chem. Soc. 132(39), 1362113623 (2010).
http://dx.doi.org/10.1021/ja105100f
77.
77. K. Iwata and H. Takahashi, J. Mol. Struct. 598(1), 97102 (2001).
http://dx.doi.org/10.1016/S0022-2860(01)00810-9
78.
78. S. Hammes-Schiffer and A. A. Stuchebrukhov, Chem. Rev. 110(12), 69396960 (2010).
http://dx.doi.org/10.1021/cr1001436
79.
79. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, Chem. Rev. 112(7), 40164093 (2012).
http://dx.doi.org/10.1021/cr200177j
80.
80. H. A. Kramers, Physica 7, 284304 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
81.
81. R. F. Grote and J. T. Hynes, J. Chem. Phys. 73(6), 27152732 (1980).
http://dx.doi.org/10.1063/1.440485
82.
82. R. F. Grote and J. T. Hynes, J. Chem. Phys. 75(5), 21912198 (1981).
http://dx.doi.org/10.1063/1.442331
83.
83. J. M. Anna, C. R. Baiz, M. R. Ross, R. McCanne, and K. J. Kubarych, Int. Rev. Phys. Chem. 31(3), 367419 (2012).
http://dx.doi.org/10.1080/0144235X.2012.716610
84.
84. J. M. Anna and K. J. Kubarych, J. Chem. Phys. 133(17), 174506 (2010).
http://dx.doi.org/10.1063/1.3492724
85.
85. H. S. Chung and W. A. Eaton, Nature (London) 502(7473), 685688 (2013).
http://dx.doi.org/10.1038/nature12649
86.
86. N. Kanaan, S. Ferrer, S. Marti, M. Garcia-Viloca, A. Kohen, and V. Moliner, J. Am. Chem. Soc. 133(17), 66926702 (2011).
http://dx.doi.org/10.1021/ja1114369
87.
87. B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30(10), 15451614 (2009).
http://dx.doi.org/10.1002/jcc.21287
88.
88. S. C. L. Kamerlin and A. Warshel, Comput. Mol. Sci. 1(1), 3045 (2011).
http://dx.doi.org/10.1002/wcms.10
89.
89. D. R. Glowacki, E. Paci, and D. V. Shalashilin, J. Phys. Chem. B 113(52), 1660316611 (2009).
http://dx.doi.org/10.1021/jp9074898
90.
90. D. R. Glowacki, E. Paci, and D. V. Shalashilin, J. Chem. Theory Comput. 7(5), 12441252 (2011).
http://dx.doi.org/10.1021/ct200011e
91.
91. D. V. Shalashilin, G. S. Beddard, E. Paci, and D. R. Glowacki, J. Chem. Phys. 137(16), 165102 (2012).
http://dx.doi.org/10.1063/1.4759088
92.
92. A. C. Moskun and S. E. Bradforth, J. Chem. Phys. 119(8), 45004515 (2003).
http://dx.doi.org/10.1063/1.1591726
93.
93. A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, Science 311(5769), 19071911 (2006).
http://dx.doi.org/10.1126/science.1123738
94.
94. J. Few, D.Phil. thesis, University of Oxford, 2013.
95.
95. I. Benjamin and K. R. Wilson, J. Chem. Phys. 90(8), 41764197 (1989).
http://dx.doi.org/10.1063/1.455775
96.
96. C. Z. Wan, M. Gupta, and A. H. Zewail, Chem. Phys. Lett. 256(3), 279287 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00443-5
97.
97. J. Larsen, D. Madsen, J. A. Poulsen, T. D. Poulsen, S. R. Keiding, and J. Thogersen, J. Chem. Phys. 116(18), 79978005 (2002).
http://dx.doi.org/10.1063/1.1467897
98.
98. C. A. Rivera, N. Winter, R. V. Harper, I. Benjamin, and S. E. Bradforth, Phys. Chem. Chem. Phys. 13(18), 82698283 (2011).
http://dx.doi.org/10.1039/c1cp20252a
99.
99. U. Samuni, S. Kahana, R. Fraenkel, Y. Haas, D. Danovich, and S. Shaik, Chem. Phys. Lett. 225(4–6), 391397 (1994).
http://dx.doi.org/10.1016/0009-2614(94)87100-0
100.
100. C. Murray and A. J. Orr-Ewing, Int. Rev. Phys. Chem. 23(3), 435482 (2004).
http://dx.doi.org/10.1080/01442350412331329166
101.
101. F. Abou-Chahine, S. J. Greaves, G. T. Dunning, A. J. Orr-Ewing, G. M. Greetham, I. P. Clark, and M. Towrie, Chem. Sci. 4(1), 226237 (2013).
http://dx.doi.org/10.1039/c2sc21267f
102.
102. J. J. Lin, J. G. Zhou, W. C. Shiu, and K. P. Liu, Science 300(5621), 966969 (2003).
http://dx.doi.org/10.1126/science.1083672
103.
103. M. A. Wickramaaratchi, D. W. Setser, H. Hildebrandt, B. Korbitzer, and H. Heydtmann, Chem. Phys. 94(1–2), 109129 (1985).
http://dx.doi.org/10.1016/0301-0104(85)85070-9
104.
104. M. A. Thompson, J. P. Martin, J. P. Darr, W. C. Lineberger, and R. Parson, J. Chem. Phys. 129(22), 224304 (2008).
http://dx.doi.org/10.1063/1.3033746
105.
105. L. Sheps, E. M. Miller, S. Horvath, M. A. Thompson, R. Parson, A. B. McCoy, and W. C. Lineberger, Science 328(5975), 220224 (2010).
http://dx.doi.org/10.1126/science.1184616
106.
106. R. B. Metz, J. D. Thoemke, J. M. Pfeiffer, and F. F. Crim, J. Chem. Phys. 99(3), 17441751 (1993).
http://dx.doi.org/10.1063/1.465291
107.
107. J. D. Thoemke, J. M. Pfeiffer, R. B. Metz, and F. F. Crim, J. Phys. Chem. 99(37), 1374813754 (1995).
http://dx.doi.org/10.1021/j100037a023
108.
108. M. J. Bronikowski, W. R. Simpson, B. Girard, and R. N. Zare, J. Chem. Phys. 95(11), 86478648 (1991).
http://dx.doi.org/10.1063/1.461243
109.
109. M. J. Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97(10), 21942203 (1993).
http://dx.doi.org/10.1021/j100112a021
110.
110. W. R. Simpson, T. P. Rakitzis, S. A. Kandel, A. J. Orr-Ewing, and R. N. Zare, J. Chem. Phys. 103(17), 73137335 (1995).
http://dx.doi.org/10.1063/1.470305
111.
111. X. Chen, C. K. Regan, S. L. Craig, E. H. Krenske, K. N. Houk, W. L. Jorgensen, and J. I. Brauman, J. Am. Chem. Soc. 131(44), 1616216170 (2009).
http://dx.doi.org/10.1021/ja9053459
112.
112. G. Vayner, K. N. Houk, W. L. Jorgensen, and J. I. Brauman, J. Am. Chem. Soc. 126(29), 90549058 (2004).
http://dx.doi.org/10.1021/ja049070m
113.
113. R. Otto, J. Brox, S. Trippel, M. Stei, T. Best, and R. Wester, Nat. Chem. 4(7), 534538 (2012).
http://dx.doi.org/10.1038/nchem.1362
114.
114. S. J. Harris, D. Murdock, Y. Y. Zhang, T. A. A. Oliver, M. P. Grubb, A. J. Orr-Ewing, G. M. Greetham, I. P. Clark, M. Towrie, S. E. Bradforth, and M. N. R. Ashfold, Phys. Chem. Chem. Phys. 15(18), 65676582 (2013).
http://dx.doi.org/10.1039/c3cp50756d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4866761
Loading
/content/aip/journal/jcp/140/9/10.1063/1.4866761
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/9/10.1063/1.4866761
2014-03-03
2014-09-16

Abstract

Bimolecular reactions in the gas phase exhibit rich and varied dynamical behaviour, but whether a profound knowledge of the mechanisms of isolated reactive collisions can usefully inform our understanding of reactions in liquid solutions remains an open question. The fluctuating environment in a liquid may significantly alter the motions of the reacting particles and the flow of energy into the reaction products after a transition state has been crossed. Recent experimental and computational studies of exothermic reactions of CN radicals with organic molecules indicate that many features of the gas-phase dynamics are retained in solution. However, observed differences may also provide information on the ways in which a solvent modifies fundamental chemical mechanisms. This perspective examines progress in the use of time-resolved infra-red spectroscopy to study reaction dynamics in liquids, discusses how existing theories can guide the interpretation of experimental data, and suggests future challenges for this field of research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/9/1.4866761.html;jsessionid=6gifj8jtott7m.x-aip-live-02?itemId=/content/aip/journal/jcp/140/9/10.1063/1.4866761&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perspective: Bimolecular chemical reaction dynamics in liquids
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4866761
10.1063/1.4866761
SEARCH_EXPAND_ITEM