Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/9/10.1063/1.4867252
1.
1. J. H. Clements, Phys. Rev. 47, 224 (1935).
http://dx.doi.org/10.1103/PhysRev.47.224
2.
2. A. E. Douglas, Can. J. Phys. 36, 147 (1958).
http://dx.doi.org/10.1139/p58-018
3.
3. A. J. Merer, Discuss. Faraday Soc. 35, 127 (1963).
http://dx.doi.org/10.1039/df9633500127
4.
4. J. C. D. Brand, V. T. Jones, and C. di Lauro, J. Mol. Spectrosc. 45, 404 (1973).
http://dx.doi.org/10.1016/0022-2852(73)90210-5
5.
5. I. H. Hillier and V. R. Saunders, Mol. Phys. 22, 193 (1971).
http://dx.doi.org/10.1080/00268977100102471
6.
6. A. C. Vandaele, C. Hermans, and S. Fally, J. Quant. Spectrosc. Radiat. Transfer 110, 2115 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.05.006
7.
7. S. T. Ota and G. L. Richmond, J. Am. Chem. Soc. 133, 7497 (2011).
http://dx.doi.org/10.1021/ja201027k
8.
8. J. Farquhar, H. Bao, and M. Thiemens, Science 289, 756 (2000).
http://dx.doi.org/10.1126/science.289.5480.756
9.
9. T. Berndt, O. Böge, F. Stratmann, J. Heintzenberg, and M. Kulmala, Science 307, 698 (2005).
http://dx.doi.org/10.1126/science.1104054
10.
10. F. Gaillard, B. Scaillet, and N. T. Arndt, Nature (London) 478, 229 (2011).
http://dx.doi.org/10.1038/nature10460
11.
11. A. E. Bourassa et al., Science 337, 78 (2012).
http://dx.doi.org/10.1126/science.1219371
12.
12. I. Halevy, M. T. Zuber, and D. P. Schrag, Science 318, 1903 (2007).
http://dx.doi.org/10.1126/science.1147039
13.
13. L. A. Leshin et al., Science 341, 1238937 (2013).
http://dx.doi.org/10.1126/science.1238937
14.
14. K. Partymiller, J. F. Meagher, and J. Heicklen, J. Photochem. 6, 405 (1976–1977).
http://dx.doi.org/10.1016/0047-2670(76)85093-9
15.
15. K. Partymiller and J. Heicklen, J. Photochem. 8, 167 (1978).
http://dx.doi.org/10.1016/0047-2670(78)80017-3
16.
16. S. Hattori et al., Proc. Natl. Acad. Sci. U.S.A. 110, 1765617661 (2013).
http://dx.doi.org/10.1073/pnas.1213153110
17.
17. A. R. Whitehill et al., Proc. Natl. Acad. Sci. U.S.A. 110, 1769117696 (2013).
http://dx.doi.org/10.1073/pnas.1306979110
18.
18. M. Baroni, M. H. Thiemens, R. J. Delmas, and J. Savarino, Science 315, 84 (2007).
http://dx.doi.org/10.1126/science.1131754
19.
19. M. H. Thiemens, Science 283, 341 (1999).
http://dx.doi.org/10.1126/science.283.5400.341
20.
20. J. Heicklen, N. Kelly, and K. Partymiller, Rev. Chem. Intermed. 3, 315 (1980).
http://dx.doi.org/10.1007/BF03052425
21.
21. S. Mai, P. Marquetand, and L. Gonzalez, “Non-adiabatic dynamics in SO2: II. The role of triplet states studied by surface-hopping simulations,” preprint arXiv:1302.1438 [physics.chem-ph] (2013).
22.
22. C. Xie, X. Hu, L. Zhou, D. Xie, and H. Guo, J. Chem. Phys. 139, 014305 (2013).
http://dx.doi.org/10.1063/1.4811840
23.
23. C. Lévêque, A. Komainda, R. Taïeb, and H. Köppel, J. Chem. Phys. 138, 044320 (2013).
http://dx.doi.org/10.1063/1.4776758
24.
24. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2009.1, a package of ab initio programs, 2009, see http://www.molpro.net.
25.
25. H. Köppel, J. Gronki, and S. J. Mahapatra, Chem. Phys. 115, 2377 (2001).
http://dx.doi.org/10.1063/1.1383986
26.
26. C. Lévêque, B. Nikoobakht, R. Taïeb, and H. Köppel, “Spin-Orbit Coupling in the low-lying excited states of SO2: Methodology and Applications” (unpublished).
27.
27. G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer, The MCTDH package, version 8.4, 2007 (University of Heidelberg, Heidelberg, Germany), see http://mctdh.uni-hd.de.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4867252
Loading
/content/aip/journal/jcp/140/9/10.1063/1.4867252
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/9/10.1063/1.4867252
2014-03-05
2016-09-28

Abstract

Even though the sulfur dioxide molecule has been extensively studied over the last decades, its photo-excitation dynamics is still unclear, due to its complexity, combining conical intersections, and spin-orbit coupling between a manifold of states. We present a comprehensive study of the intersystem crossing of the molecule in the low energy domain, based on a wave-packet propagation on the manifold of the lowest singlet and triplet states. Furthermore, spin-orbit couplings are evaluated on a geometry-dependent grid, and diabatized along with the different conical intersections. Our results show for the first time the primordial role of the triplet 3B state and furthermore predict novel interference patterns due to the different intersystem crossing channels induced by the spin-orbit couplings and the shapes of the different potential energy surfaces. These give new insight into the coupled singlet-triplet dynamics of SO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/9/1.4867252.html;jsessionid=xgGSijZnp8YVZiF2nC4fyr7z.x-aip-live-03?itemId=/content/aip/journal/jcp/140/9/10.1063/1.4867252&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/140/9/10.1063/1.4867252&pageURL=http://scitation.aip.org/content/aip/journal/jcp/140/9/10.1063/1.4867252'
Right1,Right2,Right3,