1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Origin of the difference between carbon nanotube armchair and zigzag ends
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Applied Material Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
    2 Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
    3 Applied Physics, Division of Materials Science, Department of Engineering Science and Mathematics, Luleå University of Technology, SE - 971 87, Luleå, Sweden
    a) Electronic mail: Yunguo@kth.se
    J. Chem. Phys. 140, 091102 (2014); http://dx.doi.org/10.1063/1.4867744
/content/aip/journal/jcp/140/9/10.1063/1.4867744
1.
1. S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.631
3.
3. D. Bethune, C. Klang, M. De Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).
http://dx.doi.org/10.1038/363605a0
4.
4. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
5.
5. M. Locascio, B. Peng, P. Zapol, Y. Zhu, S. Li, T. Belytschko, and H. Espinosa, Exp. Mech. 49, 169 (2009).
http://dx.doi.org/10.1007/s11340-008-9216-3
6.
6. S. Hong and S. Myung, Nat. Nanotech. 2, 207 (2007).
http://dx.doi.org/10.1038/nnano.2007.89
7.
7. Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C. Chan, and P. Sheng, Science 292, 2462 (2001).
http://dx.doi.org/10.1126/science.1060470
8.
8. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. U.S.A. 106, 6044 (2009).
http://dx.doi.org/10.1073/pnas.0900155106
9.
9. M. A. Mohamed, N. Inami, E. Shikoh, Y. Yamamoto, H. Hori, and A. Fujiwara, Sci. Tech. Adv. Mater. 9, 025019 (2008).
http://dx.doi.org/10.1088/1468-6996/9/2/025019
10.
10. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Nano Lett. 6, 562 (2006).
http://dx.doi.org/10.1021/nl051861e
11.
11. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science 293, 76 (2001).
http://dx.doi.org/10.1126/science.1061797
12.
12. T. Yildirim, O. Gülseren, C. Kılıç, and S. Ciraci, Phys. Rev. B 62, 12648 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.12648
13.
13. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science 309, 1215 (2005).
http://dx.doi.org/10.1126/science.1115311
14.
14. P. G. Collins, M. S. Arnold, and P. Avouris, Science 292, 706 (2001).
http://dx.doi.org/10.1126/science.1058782
15.
15. J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.677
16.
16. R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, and B. Maruyama, Nat. Mater. 11, 213 (2012).
http://dx.doi.org/10.1038/nmat3231
17.
17. H. Zhu, K. Suenaga, J. Wei, K. Wang, and D. Wu, J. Cryst. Growth 310, 5473 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.174
18.
18. Y. Yao, C. Feng, J. Zhang, and Z. Liu, Nano lett. 9, 1673 (2009).
http://dx.doi.org/10.1021/nl900207v
19.
19. H. R. Barzegar, F. Nitze, T. Sharifi, M. Ramstedt, C. W. Tai, A. Malolepszy, L. Stobinski, and T. Wågberg, J. Phys. Chem. C 116, 12232 (2012).
http://dx.doi.org/10.1021/jp211064c
20.
20. R. Wagner and W. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
21.
21. R. Baker, M. Barber, P. Harris, F. Feates, and R. Waite, J. Catal. 26, 51 (1972).
http://dx.doi.org/10.1016/0021-9517(72)90032-2
22.
22. J. Rodríguez-Manzo, M. Terrones, H. Terrones, H. Kroto, L. Sun, and F. Banhart, Nat. Nanotech. 2, 307 (2007).
http://dx.doi.org/10.1038/nnano.2007.107
23.
23. F. Ding, P. Larsson, J. A. Larsson, R. Ahuja, H. Duan, A. Rosén, and K. Bolton, Nano Lett. 8, 463 (2008).
http://dx.doi.org/10.1021/nl072431m
24.
24. J. P. O'Byrne, Z. Li, J. M. Tobin, J. A. Larsson, P. Larsson, R. Ahuja, and J. D. Holmes, J. Phys. Chem. C 114, 8115 (2010).
http://dx.doi.org/10.1021/jp909309t
25.
25. Z. Li, J. A. Larsson, P. Larsson, R. Ahuja, J. M. Tobin, J. O'Byrne, M. A. Morris, G. Attard, and J. D. Holmes, J. Phys. Chem. C 112, 12201 (2008).
http://dx.doi.org/10.1021/jp8023556
26.
26. N. S. Kim, Y. T. Lee, J. Park, J. B. Han, Y. S. Choi, S. Y. Choi, J. Choo, and G. H. Lee, J. Phys. Chem. B 107, 9249 (2003).
http://dx.doi.org/10.1021/jp034895o
27.
27. S. Huang, X. Cai, C. Du, and J. Liu, J. Phys. Chem. B 107, 13251 (2003).
http://dx.doi.org/10.1021/jp0364708
28.
28. J. Robertson, J. Mater. Chem. 22, 19858 (2012).
http://dx.doi.org/10.1039/c2jm33732k
29.
29. F. Ding, A. R. Harutyunyan, and B. I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 106, 2506 (2009).
http://dx.doi.org/10.1073/pnas.0811946106
30.
30. H. Dumlich and S. Reich, Phys. Rev. B 82, 085421 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085421
31.
31. J.-C. Charlier and S. Iijima, in Carbon Nanotubes, Topics in Applied Physics Vol. 80, edited by M. Dresselhaus, G. Dresselhaus, and P. Avouris (Springer Berlin, Heidelberg, 2001), pp. 5581.
32.
32. P. Larsson, J. A. Larsson, R. Ahuja, F. Ding, B. I. Yakobson, H. Duan, A. Rosén, and K. Bolton, Phys. Rev. B 75, 115419 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115419
33.
33. Y. Liu, A. Dobrinsky, and B. I. Yakobson, Phys. Rev. Lett. 105, 235502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.235502
34.
34. A. Borjesson and K. Bolton, J. Phys. Chem. C 115, 24454 (2011).
http://dx.doi.org/10.1021/jp202328w
35.
35. S. Reich, L. Li, and J. Robertson, Chem. Phys. Lett. 421, 469 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.110
36.
36. J. Baran, W. Kołodziejczyk, P. Larsson, R. Ahuja, and J. A. Larsson, Theor. Chem. Acc. 131, 1270 (2012).
http://dx.doi.org/10.1007/s00214-012-1270-3
37.
37. P. Blöuml, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
38.
38. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
39.
39. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
40.
40. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
41.
41. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
42.
42. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
43.
43. O. Hod and G. E. Scuseria, Nano Lett. 9, 2619 (2009).
http://dx.doi.org/10.1021/nl900913c
44.
44. O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B 76, 233401 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.233401
45.
45. A. Rochefort, D. R. Salahub, and P. Avouris, J. Phys. Chem. B 103, 641 (1999).
http://dx.doi.org/10.1021/jp983725m
46.
46. J. A. Larsson and D. Cremer, J. Mol. Struct. 485, 385 (1999).
http://dx.doi.org/10.1016/S0022-2860(99)00093-9
47.
47. D. Cremer, A. Wu, J. A. Larsson, and E. Kraka, Mol. Model. Ann. 6, 396 (2000).
http://dx.doi.org/10.1007/PL00010739
48.
48. S. Okada, Phys. Rev. B 77, 041408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.041408
49.
49. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, and A. Ferrari, Nano Lett. 9, 1433 (2009).
http://dx.doi.org/10.1021/nl8032697
50.
50. F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov, and A. C. Ferrari, ACS Nano 4, 5617 (2010).
http://dx.doi.org/10.1021/nn1010842
51.
51. M. Ridene, J. Girard, L. Travers, C. David, and A. Ouerghi, Surf. Sci. 606, 1289 (2012).
http://dx.doi.org/10.1016/j.susc.2012.04.006
52.
52. G. M. Rutter, N. P. Guisinger, J. N. Crain, P. N. First, and J. A. Stroscio, Phys. Rev. B 81, 245408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245408
53.
53. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, and D. Wei, Nat. Mater 10, 443 (2011).
http://dx.doi.org/10.1038/nmat3010
54.
54. T. Kawase and H. Kurata, Chem. Rev. 106, 5250 (2006).
http://dx.doi.org/10.1021/cr0509657
55.
55. Y. Wang, M. J. Kim, H. Shan, C. Kittrell, H. Fan, L. M. Ericson, W.-F. Hwang, S. Arepalli, R. H. Hauge, and R. E. Smalley, Nano Lett. 5, 997 (2005).
http://dx.doi.org/10.1021/nl047851f
56.
56. R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado, H. K. Schmidt, R. H. Hauge, A. R. Barron, and J. M. Tour, J. Am. Chem. Soc. 128, 15824 (2006).
http://dx.doi.org/10.1021/ja065767r
57.
57. T. Iwasaki, J. Robertson, and H. Kawarada, Nano Lett. 8, 886 (2008).
http://dx.doi.org/10.1021/nl073119f
58.
58. J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, and C. Zhou, Nat. Commun. 3, 1199 (2012).
http://dx.doi.org/10.1038/ncomms2205
59.
59. H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, and K. Itami, Nat. Chem. 5, 527 (2013).
http://dx.doi.org/10.1038/nchem.1655
60.
60. D. A. Gómez-Gualdron, J. M. Beetge, J. C. Burgos, and P. B. Balbuena, J. Phys. Chem. C 117, 1039710409 (2013).
http://dx.doi.org/10.1021/jp3125236
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4867744
Loading
/content/aip/journal/jcp/140/9/10.1063/1.4867744
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/9/10.1063/1.4867744
2014-03-06
2014-10-20

Abstract

In this work, we have found that the difference between armchair and zigzag ends of carbon nanotubes (CNTs) does not pertain at close study for individual bonds and thus alternative strategies need to be developed to reach the ultimate goals in selective growth. Based on first-principles simulations, the difference between binding strengths for CNTs of different chirality was investigated using hydrogen dissociation energies at their passivated ends. When all H atoms are removed collectively we find the well-known difference: that armchair bonds are much weaker than zigzag ones, which is typically seen for both CNT ends and graphene edges. However, when individual H atoms are removed we find almost no difference in hydrogen dissociation energies, small difference in bond lengths, which by association means small difference in C–C and M–C binding energies. We show convincingly that the difference in binding energy between armchair and zigzag ends is due to a fragment stabilization effect that is only manifested when all (or several neighbouring) bonds are broken. This is because at armchair ends/edges neighbouring dangling bonds can pair-up to form C≡C triple bonds that constitute a considerable stabilization effect compared to the isolated dangling bonds at zigzag ends/edges. Consequently, in many processes, e.g., catalytic growth where bonds are normally created/broken sequentially, not collectively, the difference between armchair and zigzag ends/edges cannot be used to discriminate growth of one type over the other to achieve chiral selective growth. Strategies are discussed to realize chirality selective growth in the light of the results presented, including addition of C-fragments to favor armchair tubes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/9/1.4867744.html;jsessionid=6aq6f3g43kf5.x-aip-live-03?itemId=/content/aip/journal/jcp/140/9/10.1063/1.4867744&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Origin of the difference between carbon nanotube armchair and zigzag ends
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4867744
10.1063/1.4867744
SEARCH_EXPAND_ITEM