Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/140/9/10.1063/1.4867901
1.
1. R. R. Gamache, A. L. Laraia, and J. Lamouroux, Icarus 213(2), 720730 (2011).
http://dx.doi.org/10.1016/j.icarus.2011.03.021
2.
2. M. T. Nguyen, M. H. Matus, V. E. Jackson, V. T. Ngan, J. R. Rustad, and D. A. Dixon, J. Phys. Chem. A 112(41), 1038610398 (2008).
http://dx.doi.org/10.1021/jp804715j
3.
3. Y. Abashkin, F. Mele, N. Russo, and M. Toscano, Int. J. Quantum Chem. 52(4), 10111015 (1994).
http://dx.doi.org/10.1002/qua.560520426
4.
4. J. Altmann and T. Ford, J. Mol. Struct. 818(1–3), 8592 (2007).
http://dx.doi.org/10.1016/j.theochem.2007.05.010
5.
5. R. J. Wheatley and A. H. Harvey, J. Chem. Phys. 134(13), 134309 (2011).
http://dx.doi.org/10.1063/1.3574345
6.
6. J. Sadlej and P. Mazurek, J. Mol. Struct. 337(2), 129138 (1995).
http://dx.doi.org/10.1016/0166-1280(95)04132-P
7.
7. J. Sadlej, J. Makarewicz, and G. Chalasinski, J. Chem. Phys. 109(10), 39193927 (1998).
http://dx.doi.org/10.1063/1.476991
8.
8. C. N. Ramachandran and E. Ruckenstein, Comput. Theor. Chem. 966(1–3), 8490 (2011).
http://dx.doi.org/10.1016/j.comptc.2011.02.017
9.
9. K. M. de Lange and J. R. Lane, J. Chem. Phys. 134(3), 034301 (2011).
http://dx.doi.org/10.1063/1.3526956
10.
10. M. Kieninger and O. Ventura, J. Mol. Struct. 390, 157167 (1997).
http://dx.doi.org/10.1016/S0166-1280(96)04770-7
11.
11. Y. Danten, T. Tassaing, and M. Besnard, J. Phys. Chem. A 109(14), 32503256 (2005).
http://dx.doi.org/10.1021/jp0503819
12.
12. A. S. Tulegenov, Chem. Phys. Lett. 505(21–23), 7174 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.015
13.
13. J. Makarewicz, T.-K. Ha, and A. Bauder, J. Chem. Phys. 99(5), 36943699 (1993).
http://dx.doi.org/10.1063/1.466167
14.
14. J. Makarewicz, J. Chem. Phys. 132(23), 234305 (2010).
http://dx.doi.org/10.1063/1.3439693
15.
15. K. I. Peterson and W. Klemperer, J. Chem. Phys. 80(6), 24392445 (1984).
http://dx.doi.org/10.1063/1.446993
16.
16. G. Columberg, A. Bauder, N. Heineking, W. Stahl, and J. Makarewicz, Mol. Phys. 93(2), 215228 (1998).
http://dx.doi.org/10.1080/00268979809482205
17.
17. L. Fredin, B. Nelander, and G. Ribbegard, Chem. Scr. 7(1), 1113 (1975).
18.
18. A. Schriver, L. Schriver-Mazzuoli, P. Chaquin, and E. Dumont, J. Phys. Chem. A 110(1), 5156 (2006).
http://dx.doi.org/10.1021/jp0581328
19.
19. X. Zhang and S. P. Sander, J. Phys. Chem. A 115(35), 98549860 (2011).
http://dx.doi.org/10.1021/jp203739v
20.
20. J. Ceponkus, P. Uvdal, and B. Nelander, J. Chem. Phys. 129(19), 194306 (2008).
http://dx.doi.org/10.1063/1.3009620
21.
21. J. Ceponkus, A. Engdahl, P. Uvdal, and B. Nelander, Chem. Phys. Lett. 581, 19 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.06.046
22.
22. J. Ceponkus and B. Nelander, J. Phys. Chem. A 108(31), 64996502 (2004).
http://dx.doi.org/10.1021/jp049288v
23.
23. J. Ceponkus, P. Uvdal, and B. Nelander, J. Chem. Phys. 133(7), 074301 (2010).
http://dx.doi.org/10.1063/1.3460457
24.
24. J. Ceponkus, P. Uvdal, and B. Nelander, J. Phys. Chem. A 114(25), 68296831 (2010).
http://dx.doi.org/10.1021/jp1022218
25.
25. R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S. Kucharski, H. Williams, and B. Rice, J. Chem. Phys. 110(8), 37853803 (1999).
http://dx.doi.org/10.1063/1.479108
26.
26. W. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 24(6), 1139 (1956).
http://dx.doi.org/10.1063/1.1742731
27.
27. Y. Zhu, S. Li, P. Sun, and C. Duan, J. Mol. Spectrosc. 283, 79 (2013).
http://dx.doi.org/10.1016/j.jms.2012.12.002
http://aip.metastore.ingenta.com/content/aip/journal/jcp/140/9/10.1063/1.4867901
Loading
/content/aip/journal/jcp/140/9/10.1063/1.4867901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/140/9/10.1063/1.4867901
2014-03-07
2016-05-06

Abstract

Terahertz absorption spectra have been recorded for the weakly bound CO–HO complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic HO subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm−1 for the dissociation energy .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/140/9/1.4867901.html;jsessionid=E9o1pvulZ5mebV8rZBWqCNk0.x-aip-live-03?itemId=/content/aip/journal/jcp/140/9/10.1063/1.4867901&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd