1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/1/10.1063/1.4885338
1.
1. F. Rao and A. Caflisch, J. Mol. Biol. 342, 299 (2004).
http://dx.doi.org/10.1016/j.jmb.2004.06.063
2.
2. N.-V. Buchete and G. Hummer, J. Phys. Chem. B 112, 6057 (2008).
http://dx.doi.org/10.1021/jp0761665
3.
3. F. Noe, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. Weikl, Proc. Natl. Acad. Sci. U.S.A. 106, 19011 (2009).
http://dx.doi.org/10.1073/pnas.0905466106
4.
4. G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem. Phys. 131, 124101 (2009).
http://dx.doi.org/10.1063/1.3216567
5.
5. J.-H. Prinz et al., J. Chem. Phys. 134, 174105 (2011).
http://dx.doi.org/10.1063/1.3565032
6.
6. G. Hummer, New J. Phys. 7, 34 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/034
7.
7. O. F. Lange and H. Grubmüller, J. Chem. Phys. 124, 214903 (2006).
http://dx.doi.org/10.1063/1.2199530
8.
8. C. Micheletti, G. Bussi, and A. Laio, J. Chem. Phys. 129, 074105 (2008).
http://dx.doi.org/10.1063/1.2969761
9.
9. R. Hegger and G. Stock, J. Chem. Phys. 130, 034106 (2009).
http://dx.doi.org/10.1063/1.3058436
10.
10. M. A. Rohrdanz, W. Zheng, and C. Clementi, Annu. Rev. Phys. Chem. 64, 295 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110006
11.
11. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen, Proteins 17, 412 (1993).
http://dx.doi.org/10.1002/prot.340170408
12.
12. P. Das, M. Moll, H. Stamati, L. E. Kavraki, and C. Clementi, Proc. Natl. Acad. Sci. U.S.A. 103, 9885 (2006).
http://dx.doi.org/10.1073/pnas.0603553103
13.
13. O. F. Lange and H. Grubmüller, Proteins 62, 1053 (2006).
http://dx.doi.org/10.1002/prot.20784
14.
14. S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 105, 13841 (2008).
http://dx.doi.org/10.1073/pnas.0800228105
15.
15. J. S. Hub and B. L. de Groot, PLoS Comput. Biol. 5, e1000480 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000480
16.
16. S. V. Krivov, J. Chem. Theory Comput. 9, 135 (2013).
http://dx.doi.org/10.1021/ct3008292
17.
17. G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noe, J. Chem. Phys. 139, (2013).
http://dx.doi.org/10.1063/1.4811489
18.
18. I. T. Jolliffe, Principal Component Analysis (Springer, New York, 2002).
19.
19. T. Ichiye and M. Karplus, Proteins 11, 205 (1991).
http://dx.doi.org/10.1002/prot.340110305
20.
20. A. E. Garcia, Phys. Rev. Lett. 68, 2696 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2696
21.
21. A. Kitao and N. , Curr. Opin. Struct. Biol. 9, 164 (1999).
http://dx.doi.org/10.1016/S0959-440X(99)80023-2
22.
22. B. L. de Groot, X. Daura, A. E. Mark, and H. Grubmüller, J. Mol. Biol. 309, 299 (2001).
http://dx.doi.org/10.1006/jmbi.2001.4655
23.
23. Y. Mu, P. H. Nguyen, and G. Stock, Proteins 58, 45 (2005).
http://dx.doi.org/10.1002/prot.20310
24.
24. G. G. Maisuradze, A. Liwo, and H. A. Scheraga, Phys. Rev. Lett. 102, 238102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.238102
25.
25. J. N. Onuchic, Z. L. Schulten, and P. G. Wolynes, Annu. Rev. Phys. Chem. 48, 545 (1997).
http://dx.doi.org/10.1146/annurev.physchem.48.1.545
26.
26. K. A. Dill and H. S. Chan, Nat. Struct. Biol. 4, 10 (1997).
http://dx.doi.org/10.1038/nsb0197-10
27.
27. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
28.
28. C. Eckart, Phys. Rev. 47, 550 (1935).
http://dx.doi.org/10.1103/PhysRev.47.552
29.
29. E. B. Wilson, J. J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955).
30.
30. A. D. McLachlan, Acta Cryst. A 28, 656 (1972).
http://dx.doi.org/10.1107/S0567739472001627
31.
31. J. D. Louck and H. W. Galbraith, Rev. Mod. Phys. 48, 69 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.69
32.
32. L. R. Allen, S. V. Krivov, and E. Paci, PLoS Comput. Biol. 5, e1000428 (2009).
http://dx.doi.org/10.1371/journal.pcbi.1000428
33.
33. N. Hori, G. Chikenji, R. S. Berry, and S. Takada, Proc. Natl. Acad. Sci. U.S.A. 106, 73 (2009).
http://dx.doi.org/10.1073/pnas.0811560106
34.
34. I. V. Kalgin, A. Caflisch, S. F. Chekmarev, and M. Karplus, J. Phys. Chem. B 117, 6092 (2013).
http://dx.doi.org/10.1021/jp401742y
35.
35. D. M. D. van Aalten, B. L. de Groot, J. B. C. Finday, H. J. C. Berendsen, and A. Amadei, J. Comput. Chem. 18, 169 (1997).
http://dx.doi.org/10.1002/(SICI)1096-987X(19970130)18:2<169::AID-JCC3>3.0.CO;2-T
36.
36. N. Elmaci and R. S. Berry, J. Chem. Phys. 110, 10606 (1999).
http://dx.doi.org/10.1063/1.478992
37.
37. A. Altis, P. H. Nguyen, R. Hegger, and G. Stock, J. Chem. Phys. 126, 244111 (2007).
http://dx.doi.org/10.1063/1.2746330
38.
38. A. Altis, M. Otten, P. H. Nguyen, R. Hegger, and G. Stock, J. Chem. Phys. 128, 245102 (2008).
http://dx.doi.org/10.1063/1.2945165
39.
39. L. Riccardi, P. H. Nguyen, and G. Stock, J. Phys. Chem. B 113, 16660 (2009).
http://dx.doi.org/10.1021/jp9076036
40.
40. A. Jain, R. Hegger, and G. Stock, J. Phys. Chem. Lett. 1, 2769 (2010).
http://dx.doi.org/10.1021/jz101069e
41.
41. S. Omori, S. Fuchigami, M. Ikeguchi, and A. Kidera, J. Chem. Phys. 132, 115103 (2010).
http://dx.doi.org/10.1063/1.3360144
42.
42. S. Piana, K. Lindorff-Larsen, and D. E. Shaw, Proc. Natl. Acad. Sci. U.S.A. 109, 17845 (2012).
http://dx.doi.org/10.1073/pnas.1201811109
43.
43. D. E. Shaw et al., Science 330, 341 (2010).
http://dx.doi.org/10.1126/science.1187409
44.
44. K. N. Kudin and A. Y. Dymarsky, J. Chem. Phys. 122, 224105 (2002).
http://dx.doi.org/10.1063/1.1929739
45.
45. Y. Zhou, M. Cook, and M. Karplus, Biophys. J. 79, 2902 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76527-1
46.
46. C. Frohlich, Sci. Am. 242, 155 (1980).
http://dx.doi.org/10.1038/scientificamerican0380-154
47.
47. W. Kabsch, Acta Cryst. A 32, 922 (1976).
http://dx.doi.org/10.1107/S0567739476001873
48.
48. P. H. Hünenberger, A. E. Mark, and W. F. van Gunsteren, J. Mol. Biol. 252, 492 (1995).
http://dx.doi.org/10.1006/jmbi.1995.0514
49.
49. R. Abseher and M. Nilges, J. Mol. Biol. 279, 911 (1998).
http://dx.doi.org/10.1006/jmbi.1998.1807
50.
50. A. Amadei, G. Chillemi, M. A. Ceruso, A. Grottesi, and A. Di Nola, J. Chem. Phys. 112, 9 (2000).
http://dx.doi.org/10.1063/1.480557
51.
51. E. A. Coutsias, C. Seok, M. P. Jacobson, and K. A. Dill, J. Comput. Chem. 25, 510 (2004).
http://dx.doi.org/10.1002/jcc.10416
52.
52. D. L. Theobald and D. S. Wuttke, Proc. Natl. Acad. Sci. U.S.A. 103, 18521 (2006).
http://dx.doi.org/10.1073/pnas.0508445103
53.
53. S. Fuchigami, S. Omori, M. Ikeguchi, and A. Kidera, J. Chem. Phys. 132, 104109 (2010).
http://dx.doi.org/10.1063/1.3352566
54.
54.Reference 55 includes numerous references on the superpositioning problem.
55.
55. V. Gapsys and B. L. de Groot, Biophys. J. 104, 196 (2013).
http://dx.doi.org/10.1016/j.bpj.2012.11.003
56.
56. C. Micheletti, Phys. Life Rev. 10, 1 (2013).
http://dx.doi.org/10.1016/j.plrev.2012.10.009
57.
57. J. Jellinek and D. H. Li, Phys. Rev. Lett. 62, 241 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.241
58.
58. J. J. Prompers and R. Brüschweiler, Proteins 46, 177 (2002).
http://dx.doi.org/10.1002/prot.10025
59.
59. E. Johnson, Proteins 80, 2645 (2012).
http://dx.doi.org/10.1002/prot.24175
60.
60. V. Hornak et al., Proteins 65, 712 (2006).
http://dx.doi.org/10.1002/prot.21123
61.
61. R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).
http://dx.doi.org/10.1021/jp901540t
62.
62. K. Lindorff-Larsen et al., Proteins 78, 1950 (2010).
http://dx.doi.org/10.1002/prot.22711
63.
63. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
64.
64. H. W. Horn et al., J. Chem. Phys. 120, 9665 (2004).
http://dx.doi.org/10.1063/1.1683075
65.
65. S. Pronk et al., Bioinformatics 29, 845 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
66.
66. C. J. McKnight, P. T. Matsudaira, and P. S. Kim, Nat. Struct. Biol. 4, 180 (1997).
http://dx.doi.org/10.1038/nsb0397-180
67.
67. A. Jain and G. Stock, J. Phys. Chem. B (published online).
http://dx.doi.org/10.1021/jp410398a
68.
68. A. Wlodawer, J. Walter, R. Huber, and L. Sjölin, J. Mol. Biol. 180, 301 (1984).
http://dx.doi.org/10.1016/S0022-2836(84)80006-6
69.
69. P. H. Nguyen and G. Stock, J. Chem. Phys. 119, 11350 (2003).
http://dx.doi.org/10.1063/1.1622654
70.
70. Y. Mu, P. H. Nguyen, and G. Stock, Proteins 64, 798 (2006).
http://dx.doi.org/10.1002/prot.21038
71.
71. G. G. Maisuradze and D. M. Leitner, Proteins 67, 569 (2007).
http://dx.doi.org/10.1002/prot.21344
72.
72. A. Jain and G. Stock, J. Chem. Theory Comput. 8, 3810 (2012).
http://dx.doi.org/10.1021/ct300077q
73.
73. J. A. Hartigan and M. A. Wong, Appl. Stat. 28, 100 (1979).
http://dx.doi.org/10.2307/2346830
74.
74. S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 101, 14766 (2004).
http://dx.doi.org/10.1073/pnas.0406234101
75.
75. M. J. Grey, C. Wang, and A. G. Palmer III, J. Am. Chem. Soc. 125, 14324 (2003).
http://dx.doi.org/10.1021/ja0367389
76.
76.See the supplementary material at http://dx.doi.org/10.1063/1.4885338 for details on various fitting procedures for HP35 (Fig. S1), several PCAs for BPTI (Figs. S2-S6), and the clustering of BPTI (Figs. S7 and S8). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/1/10.1063/1.4885338
Loading
/content/aip/journal/jcp/141/1/10.1063/1.4885338
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/1/10.1063/1.4885338
2014-07-07
2015-08-01

Abstract

Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant motion rather than the much smaller motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/1/1.4885338.html;jsessionid=8gr46cde01s3h.x-aip-live-03?itemId=/content/aip/journal/jcp/141/1/10.1063/1.4885338&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Principal component analysis of molecular dynamics: On the use of Cartesian vs. internal coordinates
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/1/10.1063/1.4885338
10.1063/1.4885338
SEARCH_EXPAND_ITEM