1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Dynamic disorder and the energetic costs of information transduction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/141/1/10.1063/1.4885725
1.
1. W. E. Moerner and M. Orrit, Science 283, 16701676 (1999).
http://dx.doi.org/10.1126/science.283.5408.1670
2.
2. S. Weiss, Science 283, 16761683 (1999).
http://dx.doi.org/10.1126/science.283.5408.1676
3.
3. A. M. van Oijen, P. C. Blainey, D. J. Crampton, C. C. Richardson, T. Ellenberger, and X. S. Xie, Science 301, 12351238 (2003).
http://dx.doi.org/10.1126/science.1084387
4.
4. O. Flomenbom, K. Velonia, D. Loos, S. Masuo, M. Cotlet, Y. Engelborghs, J. Hofkens, A. E. Rowan, R. J. M. Nolte, M. V. der Auweraer, F. C. de Schryver, and J. Klafter, Proc. Natl. Acad. Sci. U.S.A. 102, 23682372 (2005).
http://dx.doi.org/10.1073/pnas.0409039102
5.
5. R. Zwanzig, Acc. Chem. Res. 23, 148152 (1990).
http://dx.doi.org/10.1021/ar00173a005
6.
6. W. Min, B. P. English, G. Luo, B. J. Cherayil, S. C. Kou, and X. Sunney Xie, Acc. Chem. Res. 38, 923931 (2005).
http://dx.doi.org/10.1021/ar040133f
7.
7. S. C. Kou, B. J. Cherayil, W. Min, B. P. English, and X. Sunney Xie, J. Phys. Chem. B 109, 1906819081 (2005).
http://dx.doi.org/10.1021/jp051490q
8.
8. G. K. Schenter and H. P. Lu, J. Phys. Chem. A 103, 1047710488 (1999).
http://dx.doi.org/10.1021/jp992324j
9.
9. J. Cao and R. J. Silbey, J. Phys. Chem. B 112, 1286712880 (2008).
http://dx.doi.org/10.1021/jp803347m
10.
10. H. Yang and X. Sunney Xie, J. Chem. Phys. 117, 10965 (2002).
http://dx.doi.org/10.1063/1.1521154
11.
11. I. V. Gopich and A. Szabo, J. Phys. Chem. B 114, 15221 (2010).
http://dx.doi.org/10.1021/jp105359z
12.
12. I. V. Gopich and A. Szabo, Proc. Natl. Acad. Sci. U.S.A. 109, 7747 (2012).
http://dx.doi.org/10.1073/pnas.1205120109
13.
13. R. Landauer, IBM J. Res. Dev. 5, 183191 (1961).
http://dx.doi.org/10.1147/rd.53.0183
14.
14. D. F. Anderson, J. Chem. Phys. 127, 214107 (2007).
http://dx.doi.org/10.1063/1.2799998
15.
15. R. Cheong, A. Rhee, C. J. Wang, I. Nemenman, and A. Levchenko, Science 334, 354358 (2011).
http://dx.doi.org/10.1126/science.1204553
16.
16. U. Alon, Nat. Rev. 8, 450461 (2007).
http://dx.doi.org/10.1038/nrg2102
17.
17. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Oxford, 1981).
18.
18. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90041-3
19.
19. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
http://dx.doi.org/10.1021/j100540a008
20.
20. D. T. Gillespie, Physica A 188, 404425 (1992).
http://dx.doi.org/10.1016/0378-4371(92)90283-V
21.
21. O. Flomenbom and R. J. Silbey, Proc. Natl. Acad. Sci. U.S.A. 103, 10907 (2006).
http://dx.doi.org/10.1073/pnas.0604546103
22.
22. O. Flomenbom and R. J. Silbey, J. Chem. Phys. 128, 114902 (2008).
http://dx.doi.org/10.1063/1.2825613
23.
23. W. J. Bruno, J. Yang, and J. E. Pearson, Proc. Natl. Acad. Sci. U.S.A. 102, 6326 (2005).
http://dx.doi.org/10.1073/pnas.0409110102
24.
24. F. Qin, A. Auerbach, and F. Sachs, Proc. R. Soc. London, Ser. B 264, 375 (1997).
http://dx.doi.org/10.1098/rspb.1997.0054
25.
25. J. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
http://dx.doi.org/10.1023/A:1004589714161
26.
26. P. Mehta and D. J. Schwab, Proc. Natl. Acad. Sci. U.S.A. 109, 1797817982 (2012).
http://dx.doi.org/10.1073/pnas.1207814109
27.
27. P. Gaspard, J. Chem. Phys. 120, 8898 (2004).
http://dx.doi.org/10.1063/1.1688758
28.
28. R. G. Gallagher, Stochastic Processes Theory for Applications (Cambridge University Press, New York, 2013).
29.
29. D. S. Leonard and L. E. Reichl, Phys. Rev. E. 49, 1734 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.1734
30.
30. Z. Hou and H. Xin, J. Chem. Phys. 119, 11508 (2003).
http://dx.doi.org/10.1063/1.1624053
31.
31. C. Schmitt, B. Dybiec, P. Hanggi, and C. Bechinger, Europhys. Lett. 74, 937943 (2006).
http://dx.doi.org/10.1209/epl/i2006-10052-6
32.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/1/10.1063/1.4885725
Loading
/content/aip/journal/jcp/141/1/10.1063/1.4885725
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/1/10.1063/1.4885725
2014-07-03
2014-07-26

Abstract

We study a model of dynamic disorder relevant for signal transduction pathways in which enzymatic reaction rates fluctuate over several orders of magnitude. For the simple networks we consider, dynamic disorder drives the system far from equilibrium and imposes an energetic burden for high fidelity signaling capability. We study how the dynamics of the underlying stochastic behavior in the reaction rate process is related to the energetic cost of transmitting information through the network.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/1/1.4885725.html;jsessionid=mxmcqibm6xht.x-aip-live-06?itemId=/content/aip/journal/jcp/141/1/10.1063/1.4885725&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamic disorder and the energetic costs of information transduction
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/1/10.1063/1.4885725
10.1063/1.4885725
SEARCH_EXPAND_ITEM