Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. X. He, K. Wang, W. Tan, B. Liu, X. Lin, C. He, D. Li, S. Huang, and J. Li, J. Am. Chem. Soc. 125, 7168 (2003).
2. J. Clark, E. M. Singer, D. R. Korns, and S. S. Smith, BioTechniques 36, 992 (2004).
3. W. Tan, K. Wang, X. He, X. J. Zhao, T. Drake, L. Wang, and R. P. Bagwe, Med. Res. Rev. 24, 621 (2004).
4. W. C. W. Chan, Biol. Blood Marrow Transplant. 12, 87 (2006).
5. V. Renugopalakrishnan, R. Garduño-Juárez, G. Narasimhan, C. S. Verma, X. Wei, and P. Li, J. Nanosci. Nanotechnol. 5, 1759 (2005).
6. H. Hähl, F. Evers, S. Grandthyll, M. Paulus, C. Sternemann, P. Loskill, M. Lessel, A. K. Hüsecken, T. Brenner, M. Tolan, and K. Jacobs, Langmuir 28, 7747 (2012).
7. F. González-Nilo, T. Pérez-Acle, S. Guínez-Molinos, D. A. Geraldo, C. Sandoval, A. Yévenes, L. S. Santos, V. F. Laurie, H. Mendoza, and R. E. Cachau, Biol. Res. 44, 43 (2011).
8. S. T. Moerz and P. Huber, Langmuir 30, 2729 (2014).
9. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).
10. V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72 (1996).
11. M. Malmsten, J. Colloid Interface Sci. 207, 186 (1998).
12. E. Sackmann, Science 271, 43 (1996).
13. G. Elender, M. Kühner, and E. Sackmann, Biosens. Bioelectron. 11, 565 (1996).
14. L. Schmitt, C. Dietrich, and R. Tampe, J. Am. Chem. Soc. 116, 8485 (1994).
15. W. Ding, Q. Lian, R. Samuels, and M. Polk, Polymer 44, 547 (2003).
16. M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, and X. F. Zhang, Biomaterials 23, 2641 (2002).
17. C. Peniche, W. Argüelles-Monal, H. Peniche, and N. Acosta, Macromol. Biosci. 3, 511 (2003).
18. D. S. Couto, Z. Hong, and J. F. Mano, Acta Biomater. 5, 115 (2009).
19. M. Anraku, T. Fujii, Y. Kondo, E. Kojima, T. Hata, N. Tabuchi, D. Tsuchiya, T. Goromaru, H. Tsutsumi, D. Kadowaki, T. Maruyama, M. Otagiri, and H. Tomida, Carbohydr. Polym. 83, 501 (2011).
20. M. E. López-Caballero, M. C. Gómez-Guillén, M. Pérez-Mateos, and P. A. Montero, Food Hydrocolloids 19, 303 (2005).
21. E. I. Rabea, M. E.-T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, Biomacromolecules 4, 1457 (2003).
22. A. El Hadrami, L. R. Adam, I. El Hadrami, and F. Daayf, Mar. Drugs 8, 968 (2010).
23. T. Masuko, A. Minami, N. Iwasaki, T. Majima, S.-I. Nishimura, and Y. C. Lee, Biomacromolecules 6, 880 (2005).
24. X.-G. Chen, L. Zheng, Z. Wang, C.-Y. Lee, and H.-J. Park, J. Agric. Food Chem. 50, 5915 (2002).
25. M. Burkatovskaya, A. P. Castano, T. N. Demidova-Rice, G. P. Tegos, and M. R. Hamblin, Wound Repair Regener. 16, 425 (2008).
26. Y. Pan, Y.-Z. Zhang, and Y. Li, J. Appl. Polym. Sci. 128, 647 (2013).
27. K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, and S. Luan, Electrochim. Acta 55, 3055 (2010).
28. D. Thacharodi and K. P. Rao, Biomaterials 16, 145 (1995).
29. N. M. El-Sawy, H. A. Abd El-Rehim, A. M. Elbarbary, and E.-S. A. Hegazy, Carbohydr. Polym. 79, 555 (2010).
30. S. Roller and N. Covill, Int. J. Food Microbiol. 47, 67 (1999).
31. O. B. G. Assis, R. Bernardes-Filho, D. C. Vieira, and S. P. C. Filho, Int. J. Polym. Mater. 51, 633 (2002).
32. R. Y. M. Huang, G. Y. Moon, and R. Pal, J. Membr. Sci. 184, 1 (2001).
33. A. Heras, N. Rodríguez, V. Ramos, and E. Agullo, Carbohydr. Polym. 44, 1 (2001).
34. V. Ramos, N. Rodríguez, M. Díaz, M. Rodríguez, A. Heras, and E. Agulló, Carbohydr. Polym. 52, 39 (2003).
35. M. R. Morrow, J. Stewart, S. Taneva, A. Dico, and K. M. W. Keough, Eur. Biophys. J. 33, 285 (2004).
36. B. Pawlikowska-Pawlęga, L. E. Misiak, B. Zarzyka, R. Paduch, A. Gawron, and W. I. Gruszecki, Biochim. Biophys. Acta 1818, 1785 (2012).
37. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).
38. S. L. Duncan, I. S. Dalal, and R. G. Larson, Biochim. Biophys. Acta 1808, 2450 (2011).
39. C. B. Fox, R. H. Uibel, and J. M. Harris, J. Phys. Chem. B 111, 11428 (2007).
40. A. E. Wiacek, L. Holysz, and E. Chibowski, Langmuir 24, 7413 (2008).
41. F. S. Ligler, B. M. Lingerfelt, R. P. Price, and P. E. Schoen, Langmuir 17, 5082 (2001).
42. Z. Montiel-González, G. Luna-Bárcenas, and A. Mendoza-Galván, Phys. Status Solidi C 5, 1434 (2008).
43. M. Pakravan, M.-C. Heuzey, and A. Ajji, Biomacromolecules 13, 412 (2012).
44. X. Geng, O.-H. Kwon, and J. Jang, Biomaterials 26, 5427 (2005).
45. K. Desai, K. Kit, J. Li, and S. Zivanovic, Biomacromolecules 9, 1000 (2008).
46.The office for intellectual property of the P. Universidad Católica de Chile is processing a patent for this device. Meanwhile a provisional patent is pending (U. G. Volkmann, T. Perez-Acle, S. Gutierrez, M. J. Retamal, and M. Cisternas, U.S. Provisional Patent Application 62/037,027 (14 August 2014)).
47. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
48. I. Tidswell, B. Ocko, P. Pershan, S. Wasserman, G. Whitesides, and J. Axe, Phys. Rev. B 41, 1111 (1990).
49. C. González, U. G. Volkmann, M. J. Retamal, M. Cisternas, M. A. Sarabia, and K. A. López, J. Chem. Phys. 136, 134709 (2012).
50. E. A. Cisternas, T. P. Corrales, V. Del Campo, P. A. Soza, U. G. Volkmann, M. Bai, H. Taub, and F. Y. Hansen, J. Chem. Phys. 131, 114705 (2009).
51. S. Gunasekaran, E. Sailatha, S. Seshadri, and S. Kumaresan, Indian J. Pure Appl. Phys. 47, 12 (2009).
52. K. Zhang, A. Weltrowski, D. Peschel, S. Fischer, and T. Groth, Functional Materials from Renewable Sources, edited by F. Liebner and T. Rosenau (American Chemical Society, 2012), Chap. 16, pp. 297314.
53. H. Shechter, R. Brener, and J. Suzanne, Europhys. Lett. 6, 163 (1988).
54. H. Shechter, R. Brener, M. Folman, and J. Suzanne,Phys. Rev. B 41, 2748 (1990).
55. H. Yao, S. Matuoka, B. Tenchov, and I. Hatta, Biophys. J. 59, 252 (1991).
56. K. Sengupta, V. A. Raghunathan, and J. Katsaras, Phys. Rev. E 68, 031710 (2003).
57. T. Kaasgaard, C. Leidy, J. H. Crowe, O. G. Mouritsen, and K. Jørgensen, Biophys. J. 85, 350 (2003).
58. M. E. Herbig, F. Assi, M. Textor, and H. P. Merkle, Biochemistry 45, 3598 (2006).
59. D. M. Czajkowsky, C. Huang, and Z. Shao, Biochemistry 34, 12501 (1995).
60. K. Sakurai, T. Maegawa, and T. Takahashi, Polymer 41, 7051 (2000).
61. K. A. López González, “Estudio de propiedades dependientes de temperatura y humedad en membranas fosfolipídicas con Elipsometría de Imágenes y AFM,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2011.
62. I. Vergara Kausel, “Estudio de DPPC sobre SiO2,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2009.
63. R. P. Ortega González, “Caracterización de Transiciones de fases de moléculas órgano-fosforadas por elipsometría de alta resolución,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2011.
64. R. Kassies, K. O. van der Werf, M. L. Bennink, and C. Otto, Rev. Sci. Instrum. 75, 689 (2004).

Data & Media loading...


Article metrics loading...



The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd