Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/10/10.1063/1.4894224
1.
1. X. He, K. Wang, W. Tan, B. Liu, X. Lin, C. He, D. Li, S. Huang, and J. Li, J. Am. Chem. Soc. 125, 7168 (2003).
http://dx.doi.org/10.1021/ja034450d
2.
2. J. Clark, E. M. Singer, D. R. Korns, and S. S. Smith, BioTechniques 36, 992 (2004).
http://dx.doi.org/10.2144/3606A0992
3.
3. W. Tan, K. Wang, X. He, X. J. Zhao, T. Drake, L. Wang, and R. P. Bagwe, Med. Res. Rev. 24, 621 (2004).
http://dx.doi.org/10.1002/med.20003
4.
4. W. C. W. Chan, Biol. Blood Marrow Transplant. 12, 87 (2006).
http://dx.doi.org/10.1016/j.bbmt.2005.10.004
5.
5. V. Renugopalakrishnan, R. Garduño-Juárez, G. Narasimhan, C. S. Verma, X. Wei, and P. Li, J. Nanosci. Nanotechnol. 5, 1759 (2005).
http://dx.doi.org/10.1166/jnn.2005.441
6.
6. H. Hähl, F. Evers, S. Grandthyll, M. Paulus, C. Sternemann, P. Loskill, M. Lessel, A. K. Hüsecken, T. Brenner, M. Tolan, and K. Jacobs, Langmuir 28, 7747 (2012).
http://dx.doi.org/10.1021/la300850g
7.
7. F. González-Nilo, T. Pérez-Acle, S. Guínez-Molinos, D. A. Geraldo, C. Sandoval, A. Yévenes, L. S. Santos, V. F. Laurie, H. Mendoza, and R. E. Cachau, Biol. Res. 44, 43 (2011).
http://dx.doi.org/10.4067/S0716-97602011000100006
8.
8. S. T. Moerz and P. Huber, Langmuir 30, 2729 (2014).
http://dx.doi.org/10.1021/la404947j
9.
9. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).
http://dx.doi.org/10.1016/S0167-7799(99)01412-2
10.
10. V. Hlady and J. Buijs, Curr. Opin. Biotechnol. 7, 72 (1996).
http://dx.doi.org/10.1016/S0958-1669(96)80098-X
11.
11. M. Malmsten, J. Colloid Interface Sci. 207, 186 (1998).
http://dx.doi.org/10.1006/jcis.1998.5763
12.
12. E. Sackmann, Science 271, 43 (1996).
http://dx.doi.org/10.1126/science.271.5245.43
13.
13. G. Elender, M. Kühner, and E. Sackmann, Biosens. Bioelectron. 11, 565 (1996).
http://dx.doi.org/10.1016/0956-5663(96)83292-1
14.
14. L. Schmitt, C. Dietrich, and R. Tampe, J. Am. Chem. Soc. 116, 8485 (1994).
http://dx.doi.org/10.1021/ja00098a008
15.
15. W. Ding, Q. Lian, R. Samuels, and M. Polk, Polymer 44, 547 (2003).
http://dx.doi.org/10.1016/S0032-3861(02)00834-0
16.
16. M. Zhang, X. H. Li, Y. D. Gong, N. M. Zhao, and X. F. Zhang, Biomaterials 23, 2641 (2002).
http://dx.doi.org/10.1016/S0142-9612(01)00403-3
17.
17. C. Peniche, W. Argüelles-Monal, H. Peniche, and N. Acosta, Macromol. Biosci. 3, 511 (2003).
http://dx.doi.org/10.1002/mabi.200300019
18.
18. D. S. Couto, Z. Hong, and J. F. Mano, Acta Biomater. 5, 115 (2009).
http://dx.doi.org/10.1016/j.actbio.2008.08.006
19.
19. M. Anraku, T. Fujii, Y. Kondo, E. Kojima, T. Hata, N. Tabuchi, D. Tsuchiya, T. Goromaru, H. Tsutsumi, D. Kadowaki, T. Maruyama, M. Otagiri, and H. Tomida, Carbohydr. Polym. 83, 501 (2011).
http://dx.doi.org/10.1016/j.carbpol.2010.08.009
20.
20. M. E. López-Caballero, M. C. Gómez-Guillén, M. Pérez-Mateos, and P. A. Montero, Food Hydrocolloids 19, 303 (2005).
http://dx.doi.org/10.1016/j.foodhyd.2004.06.006
21.
21. E. I. Rabea, M. E.-T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, Biomacromolecules 4, 1457 (2003).
http://dx.doi.org/10.1021/bm034130m
22.
22. A. El Hadrami, L. R. Adam, I. El Hadrami, and F. Daayf, Mar. Drugs 8, 968 (2010).
http://dx.doi.org/10.3390/md8040968
23.
23. T. Masuko, A. Minami, N. Iwasaki, T. Majima, S.-I. Nishimura, and Y. C. Lee, Biomacromolecules 6, 880 (2005).
http://dx.doi.org/10.1021/bm049352e
24.
24. X.-G. Chen, L. Zheng, Z. Wang, C.-Y. Lee, and H.-J. Park, J. Agric. Food Chem. 50, 5915 (2002).
http://dx.doi.org/10.1021/jf020151g
25.
25. M. Burkatovskaya, A. P. Castano, T. N. Demidova-Rice, G. P. Tegos, and M. R. Hamblin, Wound Repair Regener. 16, 425 (2008).
http://dx.doi.org/10.1111/j.1524-475X.2008.00382.x
26.
26. Y. Pan, Y.-Z. Zhang, and Y. Li, J. Appl. Polym. Sci. 128, 647 (2013).
http://dx.doi.org/10.1002/app.38216
27.
27. K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, and S. Luan, Electrochim. Acta 55, 3055 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.01.035
28.
28. D. Thacharodi and K. P. Rao, Biomaterials 16, 145 (1995).
http://dx.doi.org/10.1016/0142-9612(95)98278-M
29.
29. N. M. El-Sawy, H. A. Abd El-Rehim, A. M. Elbarbary, and E.-S. A. Hegazy, Carbohydr. Polym. 79, 555 (2010).
http://dx.doi.org/10.1016/j.carbpol.2009.09.002
30.
30. S. Roller and N. Covill, Int. J. Food Microbiol. 47, 67 (1999).
http://dx.doi.org/10.1016/S0168-1605(99)00006-9
31.
31. O. B. G. Assis, R. Bernardes-Filho, D. C. Vieira, and S. P. C. Filho, Int. J. Polym. Mater. 51, 633 (2002).
http://dx.doi.org/10.1080/714975800
32.
32. R. Y. M. Huang, G. Y. Moon, and R. Pal, J. Membr. Sci. 184, 1 (2001).
http://dx.doi.org/10.1016/S0376-7388(00)00604-9
33.
33. A. Heras, N. Rodríguez, V. Ramos, and E. Agullo, Carbohydr. Polym. 44, 1 (2001).
http://dx.doi.org/10.1016/S0144-8617(00)00195-8
34.
34. V. Ramos, N. Rodríguez, M. Díaz, M. Rodríguez, A. Heras, and E. Agulló, Carbohydr. Polym. 52, 39 (2003).
http://dx.doi.org/10.1016/S0144-8617(02)00264-3
35.
35. M. R. Morrow, J. Stewart, S. Taneva, A. Dico, and K. M. W. Keough, Eur. Biophys. J. 33, 285 (2004).
http://dx.doi.org/10.1007/s00249-003-0357-0
36.
36. B. Pawlikowska-Pawlęga, L. E. Misiak, B. Zarzyka, R. Paduch, A. Gawron, and W. I. Gruszecki, Biochim. Biophys. Acta 1818, 1785 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.03.020
37.
37. L. K. Tamm and H. M. McConnell, Biophys. J. 47, 105 (1985).
http://dx.doi.org/10.1016/S0006-3495(85)83882-0
38.
38. S. L. Duncan, I. S. Dalal, and R. G. Larson, Biochim. Biophys. Acta 1808, 2450 (2011).
http://dx.doi.org/10.1016/j.bbamem.2011.06.026
39.
39. C. B. Fox, R. H. Uibel, and J. M. Harris, J. Phys. Chem. B 111, 11428 (2007).
http://dx.doi.org/10.1021/jp0735886
40.
40. A. E. Wiacek, L. Holysz, and E. Chibowski, Langmuir 24, 7413 (2008).
http://dx.doi.org/10.1021/la800794x
41.
41. F. S. Ligler, B. M. Lingerfelt, R. P. Price, and P. E. Schoen, Langmuir 17, 5082 (2001).
http://dx.doi.org/10.1021/la010148b
42.
42. Z. Montiel-González, G. Luna-Bárcenas, and A. Mendoza-Galván, Phys. Status Solidi C 5, 1434 (2008).
http://dx.doi.org/10.1002/pssc.200777874
43.
43. M. Pakravan, M.-C. Heuzey, and A. Ajji, Biomacromolecules 13, 412 (2012).
http://dx.doi.org/10.1021/bm201444v
44.
44. X. Geng, O.-H. Kwon, and J. Jang, Biomaterials 26, 5427 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.01.066
45.
45. K. Desai, K. Kit, J. Li, and S. Zivanovic, Biomacromolecules 9, 1000 (2008).
http://dx.doi.org/10.1021/bm701017z
46.
46.The office for intellectual property of the P. Universidad Católica de Chile is processing a patent for this device. Meanwhile a provisional patent is pending (U. G. Volkmann, T. Perez-Acle, S. Gutierrez, M. J. Retamal, and M. Cisternas, U.S. Provisional Patent Application 62/037,027 (14 August 2014)).
47.
47. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
48.
48. I. Tidswell, B. Ocko, P. Pershan, S. Wasserman, G. Whitesides, and J. Axe, Phys. Rev. B 41, 1111 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.1111
49.
49. C. González, U. G. Volkmann, M. J. Retamal, M. Cisternas, M. A. Sarabia, and K. A. López, J. Chem. Phys. 136, 134709 (2012).
http://dx.doi.org/10.1063/1.3698486
50.
50. E. A. Cisternas, T. P. Corrales, V. Del Campo, P. A. Soza, U. G. Volkmann, M. Bai, H. Taub, and F. Y. Hansen, J. Chem. Phys. 131, 114705 (2009).
http://dx.doi.org/10.1063/1.3213642
51.
51. S. Gunasekaran, E. Sailatha, S. Seshadri, and S. Kumaresan, Indian J. Pure Appl. Phys. 47, 12 (2009).
52.
52. K. Zhang, A. Weltrowski, D. Peschel, S. Fischer, and T. Groth, Functional Materials from Renewable Sources, edited by F. Liebner and T. Rosenau (American Chemical Society, 2012), Chap. 16, pp. 297314.
http://dx.doi.org/10.1021/bk-2012-1107.ch016
53.
53. H. Shechter, R. Brener, and J. Suzanne, Europhys. Lett. 6, 163 (1988).
http://dx.doi.org/10.1209/0295-5075/6/2/012
54.
54. H. Shechter, R. Brener, M. Folman, and J. Suzanne,Phys. Rev. B 41, 2748 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.2748
55.
55. H. Yao, S. Matuoka, B. Tenchov, and I. Hatta, Biophys. J. 59, 252 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82216-0
56.
56. K. Sengupta, V. A. Raghunathan, and J. Katsaras, Phys. Rev. E 68, 031710 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.031710
57.
57. T. Kaasgaard, C. Leidy, J. H. Crowe, O. G. Mouritsen, and K. Jørgensen, Biophys. J. 85, 350 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74479-8
58.
58. M. E. Herbig, F. Assi, M. Textor, and H. P. Merkle, Biochemistry 45, 3598 (2006).
http://dx.doi.org/10.1021/bi050923c
59.
59. D. M. Czajkowsky, C. Huang, and Z. Shao, Biochemistry 34, 12501 (1995).
http://dx.doi.org/10.1021/bi00039a003
60.
60. K. Sakurai, T. Maegawa, and T. Takahashi, Polymer 41, 7051 (2000).
http://dx.doi.org/10.1016/S0032-3861(00)00067-7
61.
61. K. A. López González, “Estudio de propiedades dependientes de temperatura y humedad en membranas fosfolipídicas con Elipsometría de Imágenes y AFM,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2011.
62.
62. I. Vergara Kausel, “Estudio de DPPC sobre SiO2,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2009.
63.
63. R. P. Ortega González, “Caracterización de Transiciones de fases de moléculas órgano-fosforadas por elipsometría de alta resolución,” Licentiate thesis, Pontificia Universidad Católica de Chile, Santiago, Chile, 2011.
64.
64. R. Kassies, K. O. van der Werf, M. L. Bennink, and C. Otto, Rev. Sci. Instrum. 75, 689 (2004).
http://dx.doi.org/10.1063/1.1646767
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/10/10.1063/1.4894224
Loading
/content/aip/journal/jcp/141/10/10.1063/1.4894224
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/10/10.1063/1.4894224
2014-09-09
2016-08-29

Abstract

The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/10/1.4894224.html;jsessionid=UzYGrG30-9Qus4ABjc_CP0d8.x-aip-live-03?itemId=/content/aip/journal/jcp/141/10/10.1063/1.4894224&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/10/10.1063/1.4894224&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/10/10.1063/1.4894224'
Right1,Right2,Right3,