Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Crick, “Central dogma of molecular biology,” Nature (London) 227, 561563 (1970).
2. E. A. Doherty and J. A. Doudnan, “Ribozyme structures and mechanisms,” Annu. Rev. Biophys. Biomol. Struct. 30, 457475 (2001).
3. G. J. Hannon, “RNA interference,” Nature (London) 418, 244251 (2002).
4. J. Chen and W. Zhang, “Kinetic analysis of the effects of target structures on siRNA efficiency,” J. Chem. Phys. 137, 225102 (2012).
5. T. E. Edwards, D. J. Klein, and A. R. Ferre-d’Amare, “Riboswitches: Small-molecule recognition by gene regulatory RNAs,” Curr. Opin. Chem. Biol. 17, 273279 (2007).
6. I. Tinoco Jr. and C. Bustamante, “How RNA folds,” J. Mol. Biol. 293, 271281 (1999).
7. P. T. X. Li, J. Vieregg, and I. Tinoco Jr., “How RNA unfolds and refolds,” Annu. Rev. Biochem. 77, 77100 (2008).
8. A. M. Mustoe, C. L. Brooks, and H. M. Al-Hashimi, “Hierarchy of RNA functional dynamics,” Annu. Rev. Biochem. 83, 441466 (2014).
9. K. B. Hall, “Spectroscopic probes of RNA structures and dynamics,” Methods Mol. Biol. 875, 6784 (2012).
10. W. Zhang, and S. J. Chen, “RNA hairpin-folding kinetics,” Proc. Natl. Acad. Sci. U.S.A. 99, 19311936 (2002).
11. P. Zhao, W. Zhang, and S. J. Chen, “Predicting secondary structural folding kinetics for nucleic acids,” Biophys. J. 98, 16171625 (2010).
12. S. A. Woodson, “Metal ions and RNA folding: A highly charged topic with a dynamic future,” Curr. Opin. Struct. Biol. 9, 104109 (2005).
13. D. E. Draper, “Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water,” Biopolymers 99, 11051113 (2013).
14. K. B. Hall, “RNA does the folding dance of twist, turn, stack,” Proc. Natl. Acad. Sci. U.S.A. 110, 1670616707 (2013).
15. J. Lipfert, S. Doniach, R. Das, and D. Herschlag, “Understanding nucleic acid-ion interactions,” Annu. Rev. Biochem. 83, 813841 (2014).
16. A. Kundagrami, and M. Muthukumar, “Theory of competitive counterion adsorption on flexible polyelectrolytes: Divalent salts,” J. Chem. Phys. 128, 244901 (2008).
17. M. Muthukumar, “Theory of counter-ion condensation on flexible polyelectrolytes: Adsorption mechanism,” J. Chem. Phys. 120, 9343 (2004).
18. S. A. Pabit, J. L. Sutton, H. Chen, and L. Pollack, “Role of ion valence in the submillisecond collapse and folding of a small RNA domain,” Biochemistry 52, 15391546 (2013).
19. Z. J. Tan, and S. J. Chen, “Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte,” J. Chem. Phys. 122, 044903 (2005).
20. Z. J. Tan, and S. J. Chen, “Predicting ion binding properties for RNA tertiary structures,” Biophys. J. 99, 15651576 (2010).
21. B. A. Shapiro, Y. G. Yingling, W. Kasprzak, and E. Bindewald, “Bridging the gap in RNA structure prediction,” Curr. Opin. Struct. Biol. 17, 157165 (2007).
22. S. J. Chen, “RNA folding: Conformational statistics, folding kinetics, and ion electrostatics,” Annu. Rev. Biophys. 37, 197214 (2008).
23. M. Levitt, “Detailed molecular model for transfer ribonucleic acid,” Nature (London) 224, 759763 (1969).
24. F. Michel and E. Westhof, “Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis,” J. Mol. Biol. 216, 585610 (1990).
25. M. E. Harris, J. M. Nolan, A. Malhotra, J. W. Brown, S. C. Harvey, and N. R. Pace, “Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA,” Embo. J. 13, 39533963 (1994).
26. S. M. Stagg, J. A. Mears, and S. C. Harvey,“A structural model for the assembly of the 30S subunit of the ribosome,” J. Mol. Biol. 328, 4961 (2003).
27. M. Gruebele and D. Thirumalai,“Perspective: Reaches of chemical physics in biology,” J. Chem. Phys. 139, 121701 (2013).
28. K. Rother, M. Rother, M. Boniecki, T. Puton, and J. M. Bujnicki, “RNA and protein 3D structure modeling: Similarities and differences,” J. Mol. Model 17, 23252336 (2011).
29. C. Laing and T. Schlick, “Computional approaches to RNA structure prediction, analysis, and design,” Curr. Opin. Struct. Biol. 21, 306318 (2011).
30. C. Laing and T. Schlick, “Computatonal approaches to 3D modeling of RNA,” J. Phys.: Condens. Matter. 22, 283101 (2010).
31. J. A. Cruz, M. F. Blanchet, M. Boniecki, J. M. Bujnicki, S. J. Chen, S. Cao, R. Das, F. Ding, N. V. Dokholyan, S. C. Flores, L. Huang, C. A. Lavender, V. Lisi, F. Major, K. Mikolajczak, D. J. Patel, A. Philips, T. Puton, J. Santalucia, F. Sijenyi, T. Hermann, K. Rother, M. Rother, A. Serganov, M. Skorupski, T. Soltysinski, P. Sripakdeevong, I. Tuszynska, K. M. Weeks, C. Waldsich, M. Wildauer, N. B. Leontis, and E. Westhof, “RNA-Puzzles: A CASP-like evalution of RNA three-dimensional structure prediction,” RNA 18, 610625 (2012).
32. C. E. Hajdin, F. Ding, N. V. Dokholyan, and K. M. Weeks, “On the significance of an RNA tertiary structure prediction,” RNA 16, 13401349 (2010).
33. Y. Z. Shi, Y. Y. Wu, F. H. Wang, and Z. J. Tan,“RNA structure prediction: Progress and perspective,” Chin. Phys. B 23, 078701 (2014).
34. K. J. Riley and L. J. Maher,“p53–RNA interactions: New clues in an old mystery,” RNA 13, 18251833 (2007).
35. C. Massire and E. Westhof, “MANIP: An interactive tool for modelling RNA,” J. Mol. Graph. Model. 16, 197205 (1998).
36. F. Jossinet and E. Westhof, “Sequence to Structure (S2S): Display, manipulate and interconnect RNA data from sequence to structure,” Bioinformatics 21, 33203321 (2005).
37. F. Jossinet, T. E. Ludwig, and E. Westhof, “Assemble: An interactive graphical tool to analyze and build RNA architectures at 2D and 3D levels,” Bioinformatics 26, 20572059 (2010).
38. H. M. Martinez, J. V. Maizel Jr., and B. A. Shapiro, “RNA 2D3D: A program for generating, viewing, and comparing 3-dimensional models of RNA,” J. Biomol. Struct. Dyn. 25, 669683 (2008).
39. C. Zwieb and F. Muller, “Three-dimensional comparative modeling of RNA,” Nucleic Acids Symp. Ser. 36, 6971 (1997).
40. T. J. Macke and D. A. Case, “Modeling unusual nucleic acid structures,” in Molecular Modeling of Nucleic Acids, ACS Symposium Series Vol. 682 (American Chemical Society, 1998), pp. 379393.
41. M. Rother, K. Rother, T. Puton, and J. M. Bujnicki, “ModeRNA: A tool for comparative modeling of RNA 3D structure,” Nucleic Acids Res. 39, 40074022 (2011).
42. S. C. Flores and R. B. Altman, “Turning limited experimental information into 3D models of RNA,” RNA 16, 17691778 (2010).
43. F. Sijenyi, P. Saro, Z. Ouyang, K. Damm-Ganamet, M. Wood, J. Jiang, and J. SantaLucia Jr., “The RNA dolding problems: Different levels of RNA structure prediction,” in RNA 3D Structure Analysis and Prediction, Nucleic Acids and Molecular Biology Series, edited by N. Leontis and E. Westhof (Springer, 2011).
44. M. Popenda, M. Szachniuk, M. Antczak, K. J. Purzycka, P. Lukasiak, N. Bartol, J. Blazewicz, and R. W. Adamiak, “Automated 3D structure composition for large RNAs,” Nucleic Acids Res. 40, e112 (2012).
45. M. Parisien and F. Major, “The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data,” Nature (London) 452, 5155 (2008).
46. R. Das and D. Baker, “Automated de novo prediction of native-like RNA tertiary structures,” Proc. Natl. Acad. Sci. U.S.A. 104, 1466414669 (2007).
47. R. Das, J. Karanicolas, and D. Baker, “Atomic accuracy in predicting and designing noncanonical RNA structure,” Nat. Methods 7, 291294 (2010).
48. J. P. Bida and L. J. Maher III, “Improved prediction of RNA tertiary structure with insights into native state dynamics,” RNA 18, 385393 (2012).
49. J. Frellsen, I. Moltke, M. Thiim, K. V. Mardia, and J. Ferkinghoff-Borg, “A probabilistic model of RNA conformational space,” PLoS Comput. Biol. 5, e1000406 (2009).
50. A. Y. Sim, M. Levitt, and P. Minary, “Modeling and design by hierarchical natural moves,” Proc. Natl. Acad. Sci. U.S.A. 109, 28902895 (2012).
51. Y. Zhao, Y. Huang, Z. Gong, Y. Wang, J. Man, and Y. Xiao, “Automated and fast building of three-dimensional RNA structures,” Sci. Rep. 2, 734 (2012).
52. J. Zhang, Y. Bian, H. Lin, and W. Wang, “RNA fragment modeling with a nucleobase discrete-state model,” Phys. Rev. E 85, 021909 (2012).
53. Y. Zhao, Z. Gong, and Y. Xiao, “Improvements of the hierarchical approach for predicting RNA tertiary structure,” J. Biomol. Struct. Dyn. 28, 815826 (2011).
54. Y. Huang, S. Liu, D. Guo, L. Li, and Y. Xiao,“A novel protocol for three-dimensional structure prediction of RNA-protein complexes,” Sci. Rep. 3, 1887 (2013).
55. R. K. Z. Tan, A. S. Petrov, and S. C. Harvey, “YUP: A molecular simulation program for coarse-grained and multiscaled models,” J. Chem. Theory Comput. 2, 529540 (2006).
56. M. A. Jonikas, R. J. Radmer, A. Laederach, R. Das, S. Pearlman, D. Herschlag, and R. B. Altman, “Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters,” RNA 15,189199 (2009).
57. O. Taxilaga-Zetina, P. Pliego-Pastrana, and M. D. Carbajal-Tinoco, “Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials,” Phys. Rev. E 81, 041914 (2010).
58. F. Ding, S. Sharma, P. Chalasani, V. V. Demidov, N. E. Broude, and N. V. Dokholyan, “Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms,” RNA 14, 11641173 (2008).
59. S. Sharma, F. Ding, and N. V. Dokholyan, “iFoldRNA: Three-dimensional RNA structure prediction and folding,” Bioinformatics 24, 19511952 (2008).
60. S. Cao and S. J. Chen, “Predicting RNA folding thermodynamics with a reduced chain representation model,” RNA 11, 18841897 (2005).
61. S. Cao and S. J. Chen, “Physics-based de novo prediction of RNA 3D structures,” J. Phys. Chem. B 115, 42164226 (2011).
62. S. Pasquali and P. Derreumaux, “HiRE: A high resolution coarse-grained energy model for RNA,” J. Phys. Chem. B 114, 1195711966 (2010).
63. T. Cragnolini, P. Derreumaux, and S. Pasquali,“Coarse-grained simulations of RNA and DNA duplexes,” J. Phys. Chem. B 117, 80478060 (2013).
64. Z. Xia, D. P. Gardner, R. R. Gutell, and P. Ren, “Coarse-grained model for simulation RNA three-dimensional structures,” J. Phys. Chem. B 114, 1349713506 (2010).
65. Z. Xia, D. R. Bell, Y. Shi, and P. Ren, “RNA 3D structure prediction by using a coarse-grained model and experimental data,” J. Phys. Chem. B 117, 31353144 (2013).
66. P. Sulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, and A. A. Louis, “A nucleotide-level coarse-grained model of RNA,” J. Chem. Phys. 140, 235102 (2014).
67. N. Hori and S. Takada, “Coarse-grained structure-based model for RNA-protein complexes developed by fluctuation matching,” J. Chem. Theory Comput. 8, 33843394 (2012).
68. T. E. Cheatham III, and M. A. Young, “Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise,” Biopolymers 56, 232256 (2000).<232::AID-BIP10037>3.0.CO;2-H
69. M. Paliy, R. Melnik, and B. A. Shapiro, “Coarse-grained RNA nanostructures for molecular dynamics simulations,” Phys. Biol. 7, 036001 (2010).
70. N. E. Buchete, J. E. Straub, and D. Thirumalai, “Anisotropic coarse-grained statistical potentials improve the ability to identify nativelike protein structures,” J. Chem. Phys. 118, 7658 (2003).
71. A. E. Giessen and J. E. Straub, “Coarse-grained model of coil-to-helix kinetics demonstrates the importance of multiple nucleation sites in helix folding,” J. Chem. Theory Comput. 2, 674684 (2006).
72. J. J. de Pablo, “Coarse-grained simulations of macromolecules: From DNA to nanocomposites,” Annu. Rev. Phys. Chem. 62, 555 (2011).
73. M. G. Saunders and G. A. Voth, “Coarse-graining methods for computational biology,” Annu. Rev. Biophys. 42, 7393 (2013).
74. W. G. Noid, “Perspective: Coarse-grained models for biomolecular systems,” J. Chem. Phys. 139, 090901 (2013).
75. N. Denesyuk and D. Thirumalai, “Coarse-grained model for predicting RNA folding thermodynamics,” J. Phys. Chem. B 117, 49014911 (2013).
76. C. Hyeon and D. Thirumalai, “Mechanical unfolding of RNA hairpins,” Proc. Natl. Acad. Sci. U.S.A. 102, 67896794 (2005).
77. E. Humphris-Narayanan, and A. M. Pyle,“Discrete RNA Libraries from pseudo-torsional space,” J. Mol. Biol. 421, 626 (2012).
78. F. H. Wang, Y. Y. Wu, and Z. J. Tan, “Salt contribution to the flexibility of single-stranded nucleic acid of finite length,” Biopolymers 99, 370381 (2013).
79.See supplementary material at for the detailed description of energy functions and corresponding parameters of the model, the melting curves of three RNAs (RH23, RH24, and RH30) at different [Na+]'s and the description of the 46 RNAs used in this work and predicted results. [Supplementary Material]
80. Z. J. Tan and S. J. Chen, “Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length,” Biophys. J. 90, 11751190 (2006).
81. G. S. Manning, “The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides,” Q. Rev. Biophys. 11, 179246 (1978).
82. C. M. Gherghe, C. W. Leonard, F. Ding, N. V. Dokholyan, and K. M. Week, “Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics,” J. Am. Chem. Soc. 131, 25412546 (2009).
83. T. Xia, J. SantaLucia Jr., M. E. Burkand, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox, and D. H. Turner, “Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs,” Biochemistry 37, 1471914735 (1998).
84. D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner, “Expended sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure,” J. Mol. Biol. 288, 911940 (1999).
85. F. Leonarski, F. Trovato, V. Tozzini, A. Les, and J. Trylska, “Evolutionary algorithm in the optimization of a coarse-grained force field,” J. Chem. Theory Comput. 9, 48744889 (2013).
86. J. Berrauer, X. Huang, A. Y. Sim, and M. Levitt, “Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation,” RNA 17, 10661075 (2011).
87. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671680 (1983).
88. M. Schmitz and G. Steger, “Discription of RNA folding by simulated annealing,” J. Mol. Biol. 255, 254266 (1996).
89. N. Madras and A. D. Sokal, “The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk,” J. Stat. Phys. 50, 109186 (1988).
90. M. Parisien, J. A. Cruz, E. Westhof, and F. Major, “New metrics for comparing and assessing discrepancies between RNA 3D structures and models,” RNA 15, 18751885 (2009).
91. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph. 14, 338, 27–8 (1996).
92. D. W. Staple and S. E. Butcher, “Pseudoknots: RNA structures with diverse functions,” PLoS Biol. 3, e213 (2005).
93. S. Cao and S. J. Chen, “Predicting RNA pseudoknot folding thermodynamics,” Nucleic Acids Res. 34, 26342652 (2006).
94. S. Chauhan and S. A. Woodson,“Tertiary interactions determine the accuracy of RNA folding,” J. Am. Chem. Soc. 130, 12961303 (2008).
95. J. Zhang, J. Dundas, M. Lin, M. Chen, W. Wang, and J. Liang, “Prediction of geometrically feasible three-dimensional structures of pseudoknotted RNA through free energy estimation,” RNA 15, 22482263 (2009).
96. Y. Zhang, J. Zhang, and W. Wang, “Atomistic analysis of pseudoknotted RNA unfolding,” J. Am. Chem. Soc. 133, 68826885 (2011).
97. X. Xu and S. J. Chen, “Kinetic mechanism of conformational switch between bistable RNA hairpins,” J. Am. Chem. Soc. 134, 1249912507 (2012).
98. M. J. Serra, M. H. Lyttle, T. J. Axenson, C. A. Schadt, and D. H. Turner, “RNA hairpin loop stability depends on closing base pair,” Nucleic Acids Res. 21, 38453849 (1993).
99. M. J. Serra, W. T. Barnes, K. Betschart, M. J. Gutierrez, K. J. Sprouse, C. K. Riley, L. Stewart, and R. E. Temel, “Improved parameters for the prediction of RNA hairpin stability,” Biochemistry 36, 48444851 (1997).
100. C. J. Vecenie and M. J. Serra, “Stability of RNA hairpin loops closed by AU base pairs,” Biochemistry 43, 1181311817 (2004).
101. C. J. Vecenie, C. V. Morrow, A. Zyra, and M. J. Serra, “Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops,” Biochemistry 45, 14001407 (2006).
102. D. R. Groebe and O. C. Uhlenbeck, “Characterization of RNA hairpin loop stability,” Nucleic Acids Res. 16, 1172511735 (1988).
103. D. J. Williams and K. B. Hall, “Thermodynamic comparison of salt dependence of natural RNA hairpins and RNA hairpins with non-nucleotide spacers,” Biochemistry 35, 1466514670 (1996).
104. Z. J. Tan and S. J. Chen, “Salt dependence of nucleic acid hairpin stability,” Biophys. J. 95, 738752 (2008).
105. A. M. Soto, V. Misra, and D. E. Draper, “Tertiary structure of an RNA pseudoknot is stabilized by “diffuse” Mg2+ ions,” Biochemistry 46, 29732983 (2007).
106. P. L. Nixon and D. P. Giedroc, “Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot,” J. Mol. Biol. 296, 659671 (2000).
107. Z. J. Tan and S. J. Chen, “Salt contribution to RNA tertiary structure folding stability,” Biophys. J. 101, 176187 (2011).
108. Z. J. Tan and S. J. Chen, “Ion-mediated RNA structural collapse: Effect of spatial confinement,” Biophys. J. 103, 827836 (2012).
109. A. Casiano-Negroni, X. Sun, and H. M. Al-Hashimi, “Probing Na+-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: New insights into the role of counterions and electrostatic interactions in adaptive recognition,” Biochemistry 46, 65256535 (2007).
110. R. Lavery, M. Moakher, J. H. Maddocks, D. Petkeviciute, and K. Zakrzewska, “Conformational analysis of nucleic acids revisited: Curves+,” Nucleic Acids Res. 37, 59175929 (2009).
111. W. Stephenson, S. Keller, R. Santiago, J. E. Albrecht, P. N. Asare-Okai, S. A. Tenenbaum, M. Zuker, and P. T. X. Li, “Combining temperature and force to study folding of an RNA hairpin,” Phys. Chem. Chem. Phys. 16, 906917 (2014).
112. S. Biyun, S. S. Cho, and D. Thirumalai, “Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations,” J. Am. Chem. Soc. 133, 2063420643 (2011).
113. Z. J. Tan and S. J. Chen,“Importance of diffuse metal ion binding to RNA,” Met. Ions Life Sci. 9, 101124 (2011).
114. M. Parisien and F. Major,“Determining RNA three-dimensional structures using low-resolution data,” J. Struct. Biol. 179, 252260 (2012).
115. R. Das, M. Kudaravalli, M. Jonikas, A. Laederach, R. Fong, J. P. Schwans, D. Baker, J. A. Piccirilli, R. B. Altman, and D. Herschlag, “Structural inference of native and partially folded RNA by high-throughput contact mapping,” Proc. Natl. Acad. Sci. U.S.A. 105, 41444149 (2008).
116. S. E. Butcher and A. M. Pyle, “The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks,” Acc. Chem. Res. 44, 13021311 (2011).
117. M. H. Bailor, A. M. Mustoe, C. L. Brooks, and H. M. Al-Hashimi, “Topological constraints: Using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation,” Curr. Opin. Struct. Biol. 21, 296305 (2011).
118. M. J. Seetin and D. H. Mathews, “Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints,” J. Comput. Chem. 32, 22322244 (2011).
119. K. A. Wilkinson, E. J. Merino, and K. M. Weeks, “Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution,” Nat. Protoc. 1, 16101616 (2006).
120. C. Laing, S. Jung, N. Kim, S. Elmetwaly, M. Zahran, and T. Schlick, “Predicting helical topologies in RNA junctions as tree graphs,” PLoS One 8, e71947 (2013).
121. F. Ding, C. A. Lavender, K. M. Weeks, and N. V. Dokholyan, “Three-dimensional RNA structure refinement by hydroxyl radical probing,” Nat. Methods 9, 603608 (2012).
122. Z. J. Tan, and S. J. Chen, “RNA helix stability in mixed Na+/Mg2 +solution,” Biophys. J. 92, 36153632 (2007).
123. M. A. Jonikas, R. J. Radmer, and R. B. Altman, “Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models,” Bioinformatics 25, 32593266 (2009).

Data & Media loading...


Article metrics loading...



To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd