Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/10/10.1063/1.4895095
1.
1. N. Lou, Y. Wang, X. Li, H. Li, P. Wang, C. Wesdemiotis, A. P. Sokolov, and H. Xiong, Macromolecules 46, 3160 (2013).
http://dx.doi.org/10.1021/ma400088w
2.
2. P. J. Griffin, J. R. Sangoro, Y. Wang, A. P. Holt, V. N. Novikov, A. P. Sokolov, Z. Wojnarowska, M. Paluch, and F. Kremer, Soft Matter 9, 10373 (2013).
http://dx.doi.org/10.1039/c3sm51565f
3.
3. Y. Wang, P. J. Griffin, A. Holt, F. Fan, and A. P. Sokolov, J. Chem. Phys. 140, 104510 (2014).
http://dx.doi.org/10.1063/1.4867913
4.
4. C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and R. Böhmer, Phys. Rev. Lett. 112, 098301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.098301
5.
5. R. Böhmer, C. Gainaru, and R. Richert, “Structure and dynamics of monohydroxy alcohols–Milestones towards their microscopic understanding, 100 years after Debye,” Phys. Rep. (in press).
http://dx.doi.org/10.1016/j.physrep.2014.07.005
6.
6. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization 2: Dielectrics in Time-Dependent Fields, 2nd ed. (Elsevier, 1980).
7.
7. T. Lyon and T. A. Litovitz, J. Appl. Phys. 27, 179 (1956).
http://dx.doi.org/10.1063/1.1722331
8.
8. T. A. Litovitz and G. E. McDuffie, J. Chem. Phys. 39, 729 (1963).
http://dx.doi.org/10.1063/1.1734316
9.
9. R. Kono, T. A. Litovitz, and G. E. McDuffie, J. Chem. Phys. 45, 1790 (1966).
http://dx.doi.org/10.1063/1.1727831
10.
10. J. Emery, S. Gasse, R. A. Pethrick, and D. W. Phillips, Adv. Mol. Relax. Interact. Process 12, 47 (1978).
http://dx.doi.org/10.1016/0378-4487(78)80012-0
11.
11. R. Behrends and U. Kaatze, J. Phys. Chem. A 105, 5829 (2001).
http://dx.doi.org/10.1021/jp0103777
12.
12. B. Jakobsen, C. Maggi, T. Christensen, and J. C. Dyre, J. Chem. Phys. 129, 184502 (2008).
http://dx.doi.org/10.1063/1.3007988
13.
13. C. Gainaru, M. Wikarek, S. Pawlus, M. Paluch, R. Figuli, M. Wilhelm, T. Hecksher, B. Jakobsen, J. C. Dyre, and R. Böhmer, Colloid Polym. Sci. 292, 1913 (2014).
http://dx.doi.org/10.1007/s00396-014-3274-0
14.
14. J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
http://dx.doi.org/10.1063/1.1750343
15.
15. W. Dannhauser, J. Chem. Phys. 48, 1918 (1968).
http://dx.doi.org/10.1063/1.1668990
16.
16. W. Dannhauser, J. Chem. Phys. 48, 1911 (1968).
http://dx.doi.org/10.1063/1.1668989
17.
17. C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. A. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.258303
18.
18. L. P. Singh and R. Richert, Phys. Rev. Lett. 109, 167802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167802
19.
19. L. P. Singh, C. Alba-Simionesco, and R. Richert, J. Chem. Phys. 139, 144503 (2013).
http://dx.doi.org/10.1063/1.4823998
20.
20. H. Huth, L. M. Wang, C. Schick, and R. Richert, J. Chem. Phys. 126, 104503 (2007).
http://dx.doi.org/10.1063/1.2539105
21.
21. R. W. Gray, G. Harrison, and J. Lamb, Proc. R. Soc. London, Ser. A 356, 77 (1977).
http://dx.doi.org/10.1098/rspa.1977.0122
22.
22. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (John Wiley & Sons, Inc., 1980).
23.
23. P. Sillrén, A. Matic, M. Karlsson, M. Koza, M. Maccarini, P. Fouquet, M. Götz, T. Bauer, R. Gulich, P. Lunkenheimer, A. Loidl, J. Mattsson, C. Gainaru, E. Vynokur, S. Schildmann, S. Bauer, and R. Böhmer, J. Chem. Phys. 140, 124501 (2014).
http://dx.doi.org/10.1063/1.4868556
24.
24. C. P. Smyth and W. N. Stoops, J. Am. Chem. Soc. 51, 3330 (1929).
http://dx.doi.org/10.1021/ja01386a020
25.
25. G. P. Johari and W. Dannhauser, J. Chem. Phys. 51, 1626 (1969).
http://dx.doi.org/10.1063/1.1672223
26.
26. G. P. Johari and W. Dannhauser, J. Chem. Phys. 50, 1862 (1969).
http://dx.doi.org/10.1063/1.1671282
27.
27. S. Bauer, H. Wittkamp, S. Schildmann, M. Frey, W. Hiller, T. Hecksher, N. Olsen, C. Gainaru, and R. Böhmer, J. Chem. Phys. 139, 134503 (2013).
http://dx.doi.org/10.1063/1.4821229
28.
28. T. Christensen and N. B. Olsen, Rev. Sci. Instrum. 66, 5019 (1995).
http://dx.doi.org/10.1063/1.1146126
29.
29.Details of samples used: 2M3H from Alfa Aesar (90% purity). 3M3H, 4M3H, 5M3H from Sigma Aldric. 6M3H from TCI. 4M3H shear mechanical data reproduce the results from the study published in Ref. 4, the dielectric data were taken during that study.
30.
30.The presented data can be obtained from the “Glass and Time: Data repository,” see http://glass.ruc.dk/data.
31.
31. B. Jakobsen, K. Niss, and N. B. Olsen, J. Chem. Phys. 123, 234511 (2005).
http://dx.doi.org/10.1063/1.2136887
32.
32. K. Niss, B. Jakobsen, and N. B. Olsen, J. Chem. Phys. 123, 234510 (2005).
http://dx.doi.org/10.1063/1.2136886
33.
33. B. Jakobsen, K. Niss, C. Maggi, N. B. Olsen, T. Christensen, and J. C. Dyre, J. Non-Cryst. Solids 357, 267 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.08.010
34.
34. B. Jakobsen, T. Hecksher, T. Christensen, N. B. Olsen, J. C. Dyre, and K. Niss, J. Chem. Phys. 136, 081102 (2012).
http://dx.doi.org/10.1063/1.3690083
35.
35. P. Debye, Polar Liquids (The Chemical Catalog Company, Inc., 1929).
36.
36. C. Roland, L. Archer, P. Mott, and J. Sanchez-Reyes, J. Rheol. 48, 395 (2004).
http://dx.doi.org/10.1122/1.1645516
37.
37. T. Hecksher, N. B. Olsen, K. A. Nelson, J. C. Dyre, and T. Christensen, J. Chem. Phys. 138, 12A543 (2013).
http://dx.doi.org/10.1063/1.4789946
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/10/10.1063/1.4895095
Loading
/content/aip/journal/jcp/141/10/10.1063/1.4895095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/10/10.1063/1.4895095
2014-09-10
2016-12-05

Abstract

A recent study [C. Gainaru, R. Figuli, T. Hecksher, B. Jakobsen, J. C. Dyre, M. Wilhelm, and R. Böhmer, Phys. Rev. Lett.112, 098301 (2014)] of two supercooled monohydroxy alcohols close to the glass-transition temperature showed that the Debye peak, thus far mainly observed in the electrical response, also has a mechanical signature. In this work, we apply broadband shear-mechanical spectroscopy to a systematic series of octanol structural isomers, -methyl-3-heptanol (with ranging from 2 to 6). We find that the characteristics of the mechanical signature overall follow the systematic behavior observed in dielectric spectroscopy. However, the influence from the molecular structure is strikingly small in mechanics (compared to roughly a factor 100 increase in dielectric strength) and one isomer clearly does not conform to the general ordering. Finally, the mechanical data surprisingly indicate that the size of the supramolecular structures responsible for the Debye process is nearly unchanged in the series.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/10/1.4895095.html;jsessionid=zlIhvzyE5zNhOJFzsiZfAd9T.x-aip-live-06?itemId=/content/aip/journal/jcp/141/10/10.1063/1.4895095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/10/10.1063/1.4895095&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/10/10.1063/1.4895095'
Right1,Right2,Right3,