Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Bakkas, A. Loutellier, S. Racine, and J. P. Perchard, “FTIR interconversion studies between five forms of methanol dimers trapped in solid nitrogen,” J. Chim. Phys. (Paris) 90, 17031732 (1993).
2. T. Häber, U. Schmitt, and M. A. Suhm, “FTIR-spectroscopy of molecular clusters in pulsed supersonic slit-jet expansions,” Phys. Chem. Chem. Phys. 1, 55735582 (1999).
3. F. J. Lovas and H. Hartwig, “The microwave spectrum of the methanol dimer for K = 0 and 1 states,” J. Mol. Spectrosc. 185, 98109 (1997).
4. F. Huisken, A. Kulcke, C. Laush, and J. M. Lisy, “Dissociation of small methanol clusters after excitation of the O–H stretch vibration at 2.7μ,” J. Chem. Phys. 95, 39243929 (1991).
5. R. A. Provencal, J. B. Paul, K. Roth, C. Chapo, R. N. Casaes, R. J. Saykally, G. S. Tschumper, and H. F. Schaefer III, “Infrared cavity ringdown spectroscopy of methanol clusters: Single donor hydrogen bonding,” J. Chem. Phys. 110, 42584267 (1999).
6. U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 38633890 (2000).
7. R. Wugt Larsen, P. Zielke, and M. A. Suhm, “Hydrogen-bonded OH stretching modes of methanol clusters: A combined IR and Raman isotopomer study,” J. Chem. Phys. 126, 194307 (2007).
8. R. H. Hunt, W. N. Shelton, F. A. Flaherty, and W. B. Cook, “Torsion-rotation energy levels and the hindering potential barrier for the excited vibrational state of the OH-stretch fundamental band ν1 of methanol,” J. Mol. Spectrosc. 192, 277293 (1998).
9. F. Kollipost, K. Papendorf, Y.-F. Lee, Y.-P. Lee, and M. A. Suhm, “Alcohol dimers - how much diagonal OH anharmonicity?,” Phys. Chem. Chem. Phys. 16, 1594815956 (2014).
10. H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, “Infrared absorption of methanol clusters (CH3OH)n with n = 2–6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization,” J. Chem. Phys. 134, 144309 (2011).
11. F. C. Hagemeister, C. J. Gruenloh, and T. S. Zwier, “Density functional theory calculations of the structures, binding energies, and infrared spectra of methanol clusters,” J. Phys. Chem. A 102, 8294 (1998).
12. M. M. Pires and V. F. DeTuri, “Structural, energetic, and infrared spectra insights into methanol clusters (CH3OH)n, for n = 2–12, 16, 20. ONIOM as an efficient method of modeling large methanol clusters,” J. Chem. Theory Comput. 3, 10731082 (2007).
13. E. E. Fileti, M. A. Castro, and S. Canuto, “Calculations of vibrational frequencies, Raman activities and degrees of depolarization for complexes involving water, methanol and ethanol,” Chem. Phys. Lett. 452, 5458 (2008).
14. A. Bleiber and J. Sauer, “The vibrational frequency of the donor OH group in the H-bonded dimers of water, methanol and silanol. Ab initio calculations including anharmonicities,” Chem. Phys. Lett. 238, 243252 (1995).
15. A. Bizzarri, S. Stolte, J. Reuss, J. G. C. M. van Duijneveldt-van de Rijdt, and F. B. van Duijneveldt, “Infrared excitation and dissociation of methanol dimers and trimers,” Chem. Phys. 143, 423435 (1990).
16. H.-J. Werner, F. R. Manby, and P. J. Knowles, “Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations,” J. Chem. Phys. 118, 81498160 (2003).
17. M. Schütz, H.-J. Werner, R. Lindh, and F. R. Manby, “Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations,” J. Chem. Phys. 121, 737750 (2004).
18. H.-J. Werner and M. Schütz, “An efficient local coupled cluster method for accurate thermochemistry of large systems,” J. Chem. Phys. 135, 144116 (2011).
19. T. B. Adler and H.-J. Werner, “An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit,” J. Chem. Phys. 135, 144117 (2011).
20. G. Knizia, T. B. Adler, and H.-J. Werner, “Simplified CCSD(T)-F12 methods: theory and benchmarks,” J. Chem. Phys. 130, 054104 (2009).
21. H.-J. Werner, “Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory,” J. Chem. Phys. 129, 101103 (2008).
22. C. Hampel and H.-J. Werner, “Local treatment of electron correlation in coupled cluster theory,” J. Chem. Phys. 104, 62866297 (1996).
23. T. H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 10071023 (1989).
24. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys. 96, 67966806 (1992).
25.See supplementary material at for details on local correlation calculations as well as tables with further calculated spectroscopic data. [Supplementary Material]
26. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., molpro, version 2012.1, a package of ab initio programs, 2012, see
27. T. Hrenar, G. Rauhut, and H.-J. Werner, “Impact of local and density fitting approximations on harmonic vibrational frequencies,” J. Phys. Chem. A 110, 20602064 (2006).
28. R. A. Mata and H.-J. Werner, “Calculation of smooth potential energy surfaces using local electron correlation methods,” J. Chem. Phys. 125, 184110 (2006).
29. R. A. Mata, H.-J. Werner, and M. Schütz, “Correlation regions within a localized molecular orbital approach,” J. Chem. Phys. 128, 144106 (2008).
30. J. Altnöder, S. Oswald, and M. A. Suhm, “Phenyl- vs cyclohexyl-substitution in methanol: Implications for the OH conformation and for dispersion-affected aggregation from vibrational spectra in supersonic jets,” J. Phys. Chem. A 118, 32663279 (2014).

Data & Media loading...


Article metrics loading...



The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm−1 upon dimerization, somewhat more than in the anharmonic experiment (−111 cm−1).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd