Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, 3rd ed. (Wiley, Hoboken, 2004).
2. J. O'M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2A (Klüwer-Academic Publishers, New York, 2002).
3. A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, 2nd ed. (Wiley, Hoboken, 2001).
4. S. H. Chan, X. J. Chen, and K. A. Khor, “Reliability and accuracy of measured overpotential in a three-electrode fuel cell system,” J. Appl. Electrochem. 31, 11631170 (2001).
5. V. Krishnan and S. McIntosh, “Measurement of electrode overpotentials in for direct hydrocarbon conversion fuels,” Solid State Ionics 166, 191197 (2004).
6. S. B. Adler, “Reference electrode placement in thin solid electrolytes,” J. Electrochem. Soc. 149, E166E172 (2002).
7. S. Kjelstrup Ratkje and D. Bedeaux, “The overpotential as a surface singularity described by nonequilibrium thermodynamics,” J. Electrochem. Soc. 143, 779789 (1996).
8. D. Bedeaux and S. Kjelstrup Ratkje, “The dissipated energy of electrode surfaces. Temperature jumps from coupled transport processes,” J. Electrochem. Soc. 143, 767779 (1996).
9. S. Kjelstrup and D. Bedeaux, Nonequilibrium Thermodynamics of Heterogeneous Systems. Series on Advances in Statistical Mechanics (World Scientific, 2008), Vol. 16.
10. D. Bedeaux, A. M. Albano, and P. Mazur, “Boundary conditions and nonequilibrium thermodynamics,” Physica A 82, 438462 (1976).
11. J. Ge, S. Kjelstrup, D. Bedeaux, J. M. Simon, and B. Rousseau, “Transfer coefficients for evaporation of a system with a Lennard-Jones long-range spline potential,” Phys. Rev. E 75, 061604 (2007).
12. J. M. Rubi and S. Kjelstrup, “Mesoscopic nonequilibrium thermodynamics gives the same thermodynamic basis to Butler-Volmer and Nernst equations,” J. Phys. Chem. B 107, 1347113477 (2003).
13. H. A. Kramers, Physica 7, 284304 (1940).
14. T. van Erp, T. Trinh, S. Kjelstrup, and K. Glavatskiy, “On the relation between the Langmuir and thermodynamic flux equations,” Front. Phys. Phys. Chem. Chem. Phys. 1, 114 (2014).
15. Z. Shao and S. M. Haile, “A high-performance cathode for the next generation of solid-oxide fuel cells,” Nature 431, 170173 (2004).
16. S. Kjelstrup Ratkje and Y. Tomii, J. Electrochem. Soc. 140, 59 (1993).
17. H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley-Interscience, Hoboken, 2005).
18. H. C. Öttinger and M. Grmela, “Dynamics and thermodynamics of complex fluids. Illustration of a general formalism,” Phys. Rev. E 56, 66336655 (1997).
19. S. B. Adler, “Mechanism and kinetics of oxygen reduction on porous La1 − xSrxCoO3 − δ electrodes,” Solid State Ionics 111, 125134 (1998).
20. A. M. Svensson, S. Sunde, and K. Nisancioglu, “Mathematical modeling of oxygen exchange and transport in air-perovskite-YSZ interface region. II. Direct exchange of oxygen vacancies,” J. Electrochem. Soc. 145, 13901400 (1998).
21. T. Kawada, J. Suzuki, M. Sase, A. Kamai, K. Yashiro, Y. Nigara, J. Mizusaki, K. Kawamura, and H. Yugami, J. Electrochem. Soc. 149, E252E259 (2002).
22. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, 1962).
23. T. Savin, K. Glavatskiy, D. Bedeaux, S. Kjelstrup, and H. C. Öttinger, Eur. Phys. Lett. 97, 40002 (2012).
24. J. Ross and P. Mazur, “Some deductions from a statistical mechanical theory of chemical kinetics,” J. Chem. Phys. 35, 1928 (1961).
25. J. Xu, S. Kjelstrup, and D. Bedeaux, “Molecular dynamics simulations of a chemical reaction, conditions for local equilibrium in a temperature gradient,” Phys. Chem. Chem. Phys. 8, 20172027 (2006).
26. D. Bedeaux, and S. Kjelstrup, “The measurable heat flux that accompanies active transport by Ca2 +-ATPase,” Phys. Chem. Chem. Phys. 10, 73047317 (2008).

Data & Media loading...


Article metrics loading...



We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd