Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/12/10.1063/1.4896372
1.
1. Conical Intersections. Electronic Structure, Dynamics and Spectroscopy, Advanced Series in Physical Chemistry Vol. 15, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004).
2.
2. Conical Intersections. Theory, Computation and Experiment, Advanced Series in Physical Chemistry Vol. 17, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2011).
3.
3. D. R. Yarkony, Conical Intersections. Electronic Structure, Dynamics and Spectroscopy, Advanced Series in Physical Chemistry Vol. 15, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004), pp. 41127.
4.
4. A. Migani, and M. Olivucci, Conical Intersections. Electronic Structure, Dynamics and Spectroscopy, Advanced Series in Physical Chemistry Vol. 15, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2004), pp. 271320.
5.
5. M. A. Robb, Conical Intersections. Theory, Computation and Experiment, Advanced Series in Physical Chemistry Vol. 17, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2011), pp. 350.
6.
6. B. Sellner, M. Barbatti, and H. Lischka, J. Chem. Phys. 131, 024312 (2009).
http://dx.doi.org/10.1063/1.3175799
7.
7. A. M. Virshup, J. Chen, and T. J. Martínez, J. Chem. Phys. 137, 22A519 (2012).
http://dx.doi.org/10.1063/1.4742066
8.
8. G. J. Atchity, S. S. Xantheas, and K. Ruedenberg, J. Chem. Phys. 95, 1862 (1991).
http://dx.doi.org/10.1063/1.461036
9.
9. J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
http://dx.doi.org/10.1063/1.4757762
10.
10. M. Barbatti, WIREs Comput. Mol. Sci. 1, 620 (2011).
http://dx.doi.org/10.1002/wcms.64
11.
11. B. O. Roos Ab Initio Methods in Quantum Chemistry II, edited by K. P. Lawley (John Wiley and Sons, New York, 1987), pp. 399446;
11.K. Andersson, P. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
12.
12. I. Shavitt Modern Theoretical Chemistry Vol. 3: Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), pp. 189275.
13.
13. B. L. Feringa, Acc. Chem. Res. 34, 504 (2001);
http://dx.doi.org/10.1021/ar0001721
13.W. R. Browne and B. L. Feringa, Nature Nanotech. 1, 25 (2006);
http://dx.doi.org/10.1038/nnano.2006.45
13.M. Irie, Bull. Chem. Soc. Jpn. 81, 917 (2008);
http://dx.doi.org/10.1246/bcsj.81.917
13.V. Balzani, A. Credi, and M. Venturi, Chem. Soc. Rev. 38, 1542 (2009).
http://dx.doi.org/10.1039/b806328c
14.
14. Y. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 118, 4807 (2003).
http://dx.doi.org/10.1063/1.1545679
15.
15. F. Wang and T. Ziegler, J. Chem. Phys. 121, 12191 (2004).
http://dx.doi.org/10.1063/1.1821494
16.
16. Z. Rinkevicius, O. Vahtras, and H. Ågren, J. Chem. Phys. 133, 114104 (2010).
http://dx.doi.org/10.1063/1.3479401
17.
17. Y. A. Bernard, Y. Shao, and A. I. Krylov, J. Chem. Phys. 136, 204103 (2012).
http://dx.doi.org/10.1063/1.4714499
18.
18. M. Huix-Rotllant, B. Natarajan, A. Ipatov, C. M. Wawire, T. Deutsch, and M. E. Casida, Phys. Chem. Chem. Phys. 12, 12811 (2010).
http://dx.doi.org/10.1039/c0cp00273a
19.
19. N. Minezawa and M. S. Gordon, J. Phys. Chem. A 115, 7901 (2011).
http://dx.doi.org/10.1021/jp203803a
20.
20. M. Filatov, J. Chem. Theory Comput. 9, 4526 (2013).
http://dx.doi.org/10.1021/ct400598b
21.
21. N. Minezawa and M. S. Gordon, J. Phys. Chem. A 113, 12749 (2009).
http://dx.doi.org/10.1021/jp908032x
22.
22. M. Filatov and M. Olivucci, J. Org. Chem. 79, 3587 (2014).
http://dx.doi.org/10.1021/jo5004289
23.
23. S. Gozem, F. Melaccio, A. Valentini, M. Filatov, M. Huix-Rotllant, N. Ferré, L. M. Frutos, C. Angeli, A. I. Krylov, A. A. Granovsky, R. Lindh, and M. Olivucci, J. Chem. Theory Comput. 10, 3074 (2014).
http://dx.doi.org/10.1021/ct500154k
24.
24. W. Thiel, Adv. Chem. Phys. 93, 703 (1996).
http://dx.doi.org/10.1002/9780470141526.ch10
25.
25. W. Thiel, WIREs: Comput. Mol. Sci. 4, 145 (2014).
http://dx.doi.org/10.1002/wcms.1161
26.
26. E. Fabiano, Z. Lan, Y. Lu, and W. Thiel, Conical Intersections. Theory, Computation and Experiment, Advanced Series in Physical Chemistry Vol. 17, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2011), pp. 463496.
27.
27. E. Fabiano, T. Keal, and W. Thiel, Chem. Phys. 349, 334 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.01.044
28.
28. E. Fabiano and W. Thiel, J. Phys. Chem. A 112, 6859 (2008).
http://dx.doi.org/10.1021/jp8033402
29.
29. Z. G. Lan, E. Fabiano, and W. Thiel, J. Phys. Chem. B 113, 3548 (2009).
http://dx.doi.org/10.1021/jp809085h
30.
30. Z. G. Lan, E. Fabiano, and W. Thiel, ChemPhysChem 10, 1225 (2009).
http://dx.doi.org/10.1002/cphc.200900030
31.
31. O. Weingart, Z. G. Lan, A. Koslowski, and W. Thiel, J. Phys. Chem. Lett. 2, 1506 (2011).
http://dx.doi.org/10.1021/jz200474g
32.
32. Z. Lan, Y. Lu, E. Fabiano, and W. Thiel, ChemPhysChem 12, 1989 (2011).
http://dx.doi.org/10.1002/cphc.201001054
33.
33. A. Kazaryan, Z. Lan, L. Schäfer, W. Thiel, and M. Filatov, J. Chem. Theory Comput. 7, 2189 (2011).
http://dx.doi.org/10.1021/ct200199w
34.
34. Y. Lu, Z. Lan, and W. Thiel, Angew. Chem., Int. Ed. 50, 6864 (2011).
http://dx.doi.org/10.1002/anie.201008146
35.
35. G. L. Cui, Z. Lan, and W. Thiel, J. Am. Chem. Soc. 134, 1662 (2012).
http://dx.doi.org/10.1021/ja208496s
36.
36. Z. Lan, Y. Lu, O. Weingart, and W. Thiel, J. Phys. Chem. A 116, 1510 (2012).
http://dx.doi.org/10.1021/jp2117888
37.
37. Y. Lu, Z. Lan, and W. Thiel, J. Comput. Chem. 33, 1225 (2012).
http://dx.doi.org/10.1002/jcc.22952
38.
38. J. Gamez, O. Weingart, A. Koslowski, and W. Thiel, J. Chem. Theory Comput. 8, 2352 (2012).
http://dx.doi.org/10.1021/ct300303s
39.
39. J. B. Schönborn, A. Koslowski, W. Thiel, and B. Hartke, Phys. Chem. Chem. Phys. 14, 12193 (2012).
http://dx.doi.org/10.1039/c2cp41817g
40.
40. G. Cui and W. Thiel, Phys. Chem. Chem. Phys. 14, 12378 (2012).
http://dx.doi.org/10.1039/c2cp41867c
41.
41. G. Cui and W. Thiel, Angew. Chem. Int. Ed. 52, 433 (2013).
http://dx.doi.org/10.1002/anie.201207628
42.
42. L. Spörkel, G. Cui, and W. Thiel, J. Phys. Chem. A 117, 4574 (2013).
http://dx.doi.org/10.1021/jp4028035
43.
43. J. Gamez, O. Weingart, A. Koslowski, and W. Thiel, Phys. Chem. Chem. Phys. 15, 11814 (2013).
http://dx.doi.org/10.1039/c3cp51316e
44.
44. L. Spörkel, G. Cui, A. Koslowski, and W. Thiel, J. Phys. Chem. A 118, 152 (2014).
http://dx.doi.org/10.1021/jp4120749
45.
45. M. Barbatti, Z. Lan, R. Crespo-Otero, J. J. Szymczak, H. Lischka, and W. Thiel, J. Chem. Phys. 137, 22A503 (2012).
http://dx.doi.org/10.1063/1.4731649
46.
46. E. Teller, J. Phys. Chem. 41, 109 (1937).
http://dx.doi.org/10.1021/j150379a010
47.
47. G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday. Soc. 35, 77 (1963).
http://dx.doi.org/10.1039/df9633500077
48.
48. H. C. Longuet-Higgins, Proc. Roy. Soc. London Ser. A 344, 147 (1975).
http://dx.doi.org/10.1098/rspa.1975.0095
49.
49. D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.985
50.
50. F. Bernardi, M. Olivucci, and M. A. Robb, Chem. Soc. Rev. 25, 321 (1996).
http://dx.doi.org/10.1039/cs9962500321
51.
51. M. J. Paterson, M. J. Bearpark, M. A. Robb, and L. Blancafort, J. Chem. Phys. 121, 11562 (2004).
http://dx.doi.org/10.1063/1.1813436
52.
52. See supplementary material at http://dx.doi.org/10.1063/1.4896372 for the geometries and branching palne vectors of the CI’s studied in this work. [Supplementary Material]
53.
53. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
54.
54. J. Eargle, D. Wright, and Z. Luthey-Schulten, Bioinformatics 22, 504 (2006).
http://dx.doi.org/10.1093/bioinformatics/bti825
55.
55. M. Filatov and S. Shaik, Chem. Phys. Lett. 304, 429 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00336-X
56.
56. M. Filatov and S. Shaik, J. Phys. Chem. A 104, 6628 (2000).
http://dx.doi.org/10.1021/jp0002289
57.
57. I. d. P. R. Moreira, R. Costa, M. Filatov, and F. Illas, J. Chem. Theory Comput. 3, 764 (2007).
http://dx.doi.org/10.1021/ct7000057
58.
58. E. H. Lieb, Int. J. Quant. Chem. 24, 243 (1983).
http://dx.doi.org/10.1002/qua.560240302
59.
59. H. Englisch and R. Englisch, Phys. Stat. Sol. B 123, 711 (1984);
http://dx.doi.org/10.1002/pssb.2221230238
59.H. Englisch and R. Englisch, Phys. Stat. Sol. B 124, 373 (1984).
http://dx.doi.org/10.1002/pssb.2221240140
60.
60. P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, Theor. Chem. Acc. 99, 329 (1998).
http://dx.doi.org/10.1007/s002140050343
61.
61. P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 111, 4056 (1999).
http://dx.doi.org/10.1063/1.479707
62.
62. C. A. Ullrich and W. Kohn, Phys. Rev. Lett. 87, 093001 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.093001
63.
63. R. C. Morrison, J. Chem. Phys. 117, 10506 (2002).
http://dx.doi.org/10.1063/1.1520136
64.
64. K. J. H. Giesbertz and E. Baerends, J. Chem. Phys. 132, 194108 (2010).
http://dx.doi.org/10.1063/1.3426319
65.
65. L. Salem and C. Rowland, Angew. Chem. Int. Ed. 11, 92 (1972).
http://dx.doi.org/10.1002/anie.197200921
66.
66. T. Ziegler, A. Rauk, and E. J. Baerends, Theor. Chim. Acta 43, 261 (1977).
http://dx.doi.org/10.1007/BF00551551
67.
67. M. Filatov and S. Shaik, Chem. Phys. Lett. 288, 689 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00364-9
68.
68. M. Filatov and S. Shaik, J. Chem. Phys. 110, 116 (1999).
http://dx.doi.org/10.1063/1.477941
69.
69. R. Gaudoin and K. Burke, Phys. Rev. Lett. 93, 173001 (2004);
http://dx.doi.org/10.1103/PhysRevLett.93.173001
69.R. Gaudoin and K. Burke, Phys. Rev. Lett. 94, 029901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.029901
70.
70. F. Schautz, F. Buda, and C. Filippi, J. Chem. Phys. 121, 5836 (2004);
http://dx.doi.org/10.1063/1.1777212
70.C. Filippi and F. Buda, J. Chem. Phys. 122, 087102 (2005).
http://dx.doi.org/10.1063/1.1844292
71.
71. E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988);
http://dx.doi.org/10.1103/PhysRevA.37.2805
71.E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988);
http://dx.doi.org/10.1103/PhysRevA.37.2809
71.L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37, 2821 (1988).
http://dx.doi.org/10.1103/PhysRevA.37.2821
72.
72. A. Kazaryan, J. Heuver, and M. Filatov, J. Phys. Chem. A 112, 12980 (2008).
http://dx.doi.org/10.1021/jp8033837
73.
73. V. Bonačić-Koutecký, J. Koutecký, and J. Michl, Angew. Chem. Int. Ed. 26, 170 (1987).
http://dx.doi.org/10.1002/anie.198701701
74.
74. M. Huix-Rotllant, M. Filatov, S. Gozem, I. Schapiro, M. Olivucci, and N. Ferré, J. Chem. Theory Comput. 9, 3917 (2013).
http://dx.doi.org/10.1021/ct4003465
75.
75. O. Franck and E. Fromager, Mol. Phys. 112, 1684 (2014).
http://dx.doi.org/10.1080/00268976.2013.858191
76.
76. X. Xu, S. Gozem, M. Olivucci, and D. G. Truhlar, J. Phys. Chem. Lett. 4, 253 (2013).
http://dx.doi.org/10.1021/jz301935x
77.
77. B. G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
78.
78. S. L. Li, A. V. Marenich, X. Xu, and D. G. Truhlar, J. Phys. Chem. Lett. 0, 322 (2014).
http://dx.doi.org/10.1021/jz402549p
79.
79. M. Huix-Rotllant, A. Ipatov, A. Rubio, and M. E. Casida, Chem. Phys. 391, 120 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.03.019
80.
80. S. Maeda, K. Ohno, and K. Morokuma, J. Chem. Theory Comput. 6, 1538 (2010).
http://dx.doi.org/10.1021/ct1000268
81.
81. P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev. 112, 108 (2012).
http://dx.doi.org/10.1021/cr200137a
82.
82. J. A. Karwowski, and I. Shavitt, Handbook of Molecular Physics and Quantum Chemistry, edited by S. Wilson (Wiley, Chichester,2003), Vol. 2, pp. 227271.
83.
83. I. Shavitt The Unitary Group for the Evaluation of Electronic Energy Matrix Elements, Lecture Notes in Chemistry Vol. 22, edited by J. Hinze (Springer-Verlag, Berlin, 1981), pp. 5199.
84.
84. H. Lischka, M. Dallos, and R. Shepard, Mol. Phys. 100, 1647 (2002).
http://dx.doi.org/10.1080/00268970210155121
85.
85. M. Dallos, H. Lischka, R. Shepard, D. R. Yarkony, and P. G. Szalay, J. Chem. Phys. 120, 7330 (2004).
http://dx.doi.org/10.1063/1.1668631
86.
86. H. Lischka, M. Dallos, P. G. Szalay, D. R. Yarkony, and R. Shepard, J. Chem. Phys. 120, 7322 (2004).
http://dx.doi.org/10.1063/1.1668615
87.
87. M. Kolb and W. Thiel, J. Comput. Chem. 14, 775 (1993).
http://dx.doi.org/10.1002/jcc.540140704
88.
88. W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495 (2000).
http://dx.doi.org/10.1007/s002149900083
89.
89. M. R. Silva-Junior and W. Thiel, J. Chem. Theory Comput. 6, 1546 (2010).
http://dx.doi.org/10.1021/ct100030j
90.
90. W. Weber, “Ein neues semiempirisches NDDO- Verfahren mit Orthogonalisierungskorrekturen: Entwicklung des Modells, Parametrisierung und Anwendungen,” Ph.D. thesis (Universität Zürich, 1996).
91.
91. A. Koslowski, M. E. Beck, and W. Thiel, J. Comput. Chem. 24, 714 (2003).
http://dx.doi.org/10.1002/jcc.10210
92.
92. S. Patchkovskii, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 114, 84 (2005).
http://dx.doi.org/10.1007/s00214-005-0647-y
93.
93. B. H. Lengsfield III and D. R. Yarkony, Adv. Chem. Phys. 82, 1 (1992).
http://dx.doi.org/10.1002/9780470141403.ch1
94.
94. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
http://dx.doi.org/10.1063/1.438955
95.
95. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
96.
96. E. Kraka, M. Filatov, W. Zou, J. Gräfenstein, D. Izotov, J. Gauss, Y. He, A. Wu, V. Polo, L. Olsson, Z. Konkoli, Z. He, and D. Cremer, COLOGNE2012 Program, 2012.
97.
97. B. G. Levine, J. D. Coe, and T. J. Martínez, J. Phys. Chem. B 112, 405 (2008).
http://dx.doi.org/10.1021/jp0761618
98.
98. M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K. Nguyena, S. Su, T. Windus, M. Dupuis, and J. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
99.
99. M. Gordon, and M. Schmidt, Theory and Applications of Computational Chemistry: The First Forty Years, edited by C. Dykstra, G. Frenking, K. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005), pp. 11671189.
100.
100. H. Lischka, R. Shepard, F. B. Brown, and I. Shavitt, Int. J. Quantum Chem. Symp. 20, 91 (1981).
http://dx.doi.org/10.1002/qua.560200810
101.
101. R. Shepard, I. Shavitt, R. M. Pitzer, D. C. Comeau, M. Pepper, H. Lischka, P. G. Szalay, R. Ahlrichs, F. B. Brown, and J. Zhao, Int. J. Quantum Chem. Symp. 22, 149 (1988).
http://dx.doi.org/10.1002/qua.560340819
102.
102. H. Lischka, R. Shepard, R. M. Pitzer, I. Shavitt, M. Dallos, T. Müller, P. G. Szalay, M. Seth, G. S. Kedziora, S. Yabushita, and Z. Zhang, Phys. Chem. Chem. Phys. 3, 664 (2001).
http://dx.doi.org/10.1039/b008063m
103.
103. H. Lischka, T. Müller, P. G. Szalay, I. Shavitt, R. M. Pitzer, and R. Shepard, WIREs: Comput. Mol. Sci. 1, 191 (2011).
http://dx.doi.org/10.1002/wcms.25
104.
104. H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, T. Müller, P. G. Szalay, S. R. Brozell, G. Kedziora, E. A. Stahlberg, R. J. Harrison, J. Nieplocha, M. Minkoff, M. Barbatti, M. Schuurmann, D. R. Yarkony, S. Matsika, E. V. Beck, J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, and J. Szymczak, COLUMBUS, An Ab Initio Electronic Structure Program, release 7.0, 2012.
105.
105. W. Thiel, MNDO Program Version 6.1, Mülheim an der Ruhr, Germany, 2013.
106.
106. T. W. Keal, A. Koslowski, and W. Thiel, Theor. Chem. Acc. 118, 837 (2007).
http://dx.doi.org/10.1007/s00214-007-0331-5
107.
107. M. R. Manaa and D. R. Yarkony, J. Chem. Phys. 99, 5251 (1993).
http://dx.doi.org/10.1063/1.465993
108.
108. S. Zilberg and Y. Haas, Photochem. Photobiol. Sci. 2, 1256 (2003).
http://dx.doi.org/10.1039/b306137j
109.
109. Y. Haas, S. Cogan, and S. Zilberg, Int. J. Quant. Chem. 102, 961 (2005).
http://dx.doi.org/10.1002/qua.20460
110.
110. B. Dick, Y. Haas, and S. Zilberg, Chem. Phys. 347, 65 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.10.022
111.
111. M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys. 128, 134110 (2008).
http://dx.doi.org/10.1063/1.2889385
112.
112. D. G. Leopold, R. J. Hemley, V. Vaida, and J. L. Roebber, J. Chem. Phys. 75, 4758 (1981).
http://dx.doi.org/10.1063/1.441911
113.
113. O. Valsson, C. Angeli, and C. Filippi, Phys. Chem. Chem. Phys. 14, 11015 (2012).
http://dx.doi.org/10.1039/c2cp41387f
114.
114. S.-Y. Chiang, M. Bahou, Y.-J. Wu, and Y.-P. Lee, J. Chem. Phys. 117, 4306 (2002).
http://dx.doi.org/10.1063/1.1497630
115.
115. J. K. Rice and A. P. Baronavski, J. Phys. Chem. 96, 3359 (1992).
http://dx.doi.org/10.1021/j100187a034
116.
116. C. Filippi, M. Zaccheddu, and F. Buda, J. Chem. Theory Comput. 5, 2074 (2009).
http://dx.doi.org/10.1021/ct900227j
117.
117. D. R. Yarkony, J. Phys. Chem. A 103, 6658 (1999).
http://dx.doi.org/10.1021/jp9910136
118.
118. M. Barbatti, J. Paier, and H. Lischka, J. Chem. Phys. 121, 11614 (2004).
http://dx.doi.org/10.1063/1.1807378
119.
119. M. Ben-Nun and T. J. Martínez, Chem. Phys. 259, 237 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00194-4
120.
120. J. Quenneville and T. J. Martínez, J. Phys. Chem. A 107, 829 (2003).
http://dx.doi.org/10.1021/jp021210w
121.
121. S. Gozem, A. I. Krylov, and M. Olivucci, J. Chem. Theory Comput. 9, 284 (2013).
http://dx.doi.org/10.1021/ct300759z
122.
122. D. S. Ruiz, A. Cembran, M. Garavelli, M. Olivucci, and W. Fuss, Photochem. Photobiol. 76, 622 (2002).
http://dx.doi.org/10.1562/0031-8655(2002)076<0622:SOTCID>2.0.CO;2
123.
123. B. G. Levine and T. J. Martínez, J. Phys. Chem. A 113, 12815 (2009).
http://dx.doi.org/10.1021/jp907111u
124.
124. T. Mori and T. J. Martínez, J. Chem. Theory Comput. 9, 1155 (2013).
http://dx.doi.org/10.1021/ct300892t
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/12/10.1063/1.4896372
Loading
/content/aip/journal/jcp/141/12/10.1063/1.4896372
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/12/10.1063/1.4896372
2014-09-29
2016-12-04

Abstract

Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/12/1.4896372.html;jsessionid=kOMx4xxghDNx8rf_IyOSrlmI.x-aip-live-02?itemId=/content/aip/journal/jcp/141/12/10.1063/1.4896372&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/12/10.1063/1.4896372&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/12/10.1063/1.4896372'
Right1,Right2,Right3,