Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/12/10.1063/1.4896376
1.
1. T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Proc. Natl. Acad. Sci. U.S.A. 109, 1041 (2012).
http://dx.doi.org/10.1073/pnas.1113059109
2.
2. M. Matsumoto, S. Saito, and I. Ohmine, Nature (London) 416, 409 (2002).
http://dx.doi.org/10.1038/416409a
3.
3. I. M. Svishchev and P. G. Kusalik, Phys. Rev. B 53, R8815 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R8815
4.
4. E. B. Moore and V. Molinero, Nature (London) 479, 506 (2011).
http://dx.doi.org/10.1038/nature10586
5.
5. E. B. Moore and V. Molinero, Phys. Chem. Chem. Phys. 13, 20008 (2011).
http://dx.doi.org/10.1039/c1cp22022e
6.
6. D. Quigley and P. M. Rodger, J. Chem. Phys. 128, 154518 (2008).
http://dx.doi.org/10.1063/1.2888999
7.
7. T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011).
http://dx.doi.org/10.1039/c1cp22167a
8.
8. A. Reinhardt and J. P. K. Doye, J. Chem. Phys. 136, 054501 (2012).
http://dx.doi.org/10.1063/1.3677192
9.
9. A. V. Brukhno, J. Anwar, R. Davidchack, and R. Handel, J. Phys.: Condens. Matter 20, 494243 (2008).
http://dx.doi.org/10.1088/0953-8984/20/49/494243
10.
10. R. Radhakrishnan and B. L. Trout, Phys. Rev. Lett. 90, 158301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.158301
11.
11. R. Radhakrishnan and B. Trout, J. Am. Chem. Soc. 125, 7743 (2003).
http://dx.doi.org/10.1021/ja0211252
12.
12. E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).
http://dx.doi.org/10.1021/ja4028814
13.
13. S.-C. Mau and D. A. Huse, Phys. Rev. E 59, 4396 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.4396
14.
14. A. D. Bruce, A. N. Jackson, G. J. Ackland, and N. B. Wilding, Phys. Rev. E. 61, 906 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.906
15.
15. R. Handel, R. L. Davidchack, J. Anwar, and A. Brukhno, Phys. Rev. Lett. 100, 036104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.036104
16.
16. C. G. Salzmann, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 6, 1269 (2004).
http://dx.doi.org/10.1039/b315180h
17.
17. Y. P. Handa, D. D. Klug, and E. Whalley, Can. J. Chem. 66, 919 (1988).
http://dx.doi.org/10.1139/v88-156
18.
18. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga, J. Phys. Chem. Solids 48, 935 (1987).
http://dx.doi.org/10.1016/0022-3697(87)90130-2
19.
19. J. A. Ghormley, J. Chem. Phys. 48, 503 (1968).
http://dx.doi.org/10.1063/1.1667954
20.
20. E. Mayer and A. Hallbrucker, Nature (London) 325, 601 (1987).
http://dx.doi.org/10.1038/325601a0
21.
21. I. Kohl, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 2, 1579 (2000).
http://dx.doi.org/10.1039/a908688i
22.
22. J. E. Shilling, M. A. Tolbert, O. B. Toon, E. J. Jensen, B. J. Murray, and A. K. Bertram, Geophys. Res. Lett. 33, L17801, doi:10.1029/2006GL026671 (2006).
http://dx.doi.org/10.1029/2006GL026671
23.
23. M. Sugisaki, H. Suga, and S. Seki, Bull. Chem. Soc. Jpn. 41, 2591 (1968).
http://dx.doi.org/10.1246/bcsj.41.2591
24.
24. J. Liu, C. E. Nicholson, and S. J. Cooper, Langmuir 23, 7286 (2007).
http://dx.doi.org/10.1021/la063650a
25.
25. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
26.
26. E. B. Moore and V. Molinero, J. Chem. Phys. 132, 244504 (2010).
http://dx.doi.org/10.1063/1.3451112
27.
27. R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111 (2006).
http://dx.doi.org/10.1063/1.2198827
28.
28. A. D. Bruce, N. B. Wilding, and G. J. Ackland, Phys. Rev. Lett. 79, 3002 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3002
29.
29. A. N. Jackson, A. D. Bruce, and G. J. Ackland, Phys. Rev. E. 65, 036710 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036710
30.
30. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).
http://dx.doi.org/10.1063/1.328693
31.
31. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2635
32.
32. B. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).
http://dx.doi.org/10.1016/0370-2693(91)91256-U
33.
33. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.056101
34.
34. N. B. Wilding, Am. J. Phys. 69, 1147 (2001).
http://dx.doi.org/10.1119/1.1399044
35.
35. J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys. 112, 5339 (2000).
http://dx.doi.org/10.1063/1.481102
36.
36. W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Proc. Natl. Acad. Sci. U.S.A. 109, 21259 (2012).
http://dx.doi.org/10.1073/pnas.1210331110
37.
37. T. C. Hansen, M. M. Koza, and W. F. Kuhs, J. Phys.: Condens. Matter 20, 285104 (2008).
http://dx.doi.org/10.1088/0953-8984/20/28/285104
38.
38. W. L. Jorgensen, J. Am. Chem. Soc. 103, 335 (1981).
http://dx.doi.org/10.1021/ja00392a016
39.
39. J. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/12/10.1063/1.4896376
Loading
/content/aip/journal/jcp/141/12/10.1063/1.4896376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/12/10.1063/1.4896376
2014-09-23
2016-09-29

Abstract

A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two polytypes, leading to stacking disorder at all temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/12/1.4896376.html;jsessionid=-OrBKtcm8isARo8RDA0wvZ-3.x-aip-live-06?itemId=/content/aip/journal/jcp/141/12/10.1063/1.4896376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/12/10.1063/1.4896376&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/12/10.1063/1.4896376'
Right1,Right2,Right3,