Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/12/10.1063/1.4896656
1.
1. S. Martin, L. Chen, A. Denis, and J. Désesquelles, Phys. Rev. A 59, R1734R1737 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.R1734
2.
2. A. Brenac, F. Chandezon, H. Lebius, A. Pesnelle, S. Tomita, and B. A. Huber, Phys. Scr. 1999(T80B), 195.
http://dx.doi.org/10.1238/Physica.Topical.080a00195
3.
3. S. Tomita, H. Lebius, A. Brenac, F. Chandezon, and B. A. Huber, Phys. Rev. A 65, 053201 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.053201
4.
4. J. Kou, V. Zhakhovskii, S. Sakabe, K. Nishihara, S. Shimizu, S. Kawato, M. Hashida, K. Shimizu, S. Bulanov, Y. Izawa, Y. Kato, and N. Nakashima, J. Chem. Phys. 112, 50125020 (2000).
http://dx.doi.org/10.1063/1.481056
5.
5. V. R. Bhardwaj, P. B. Corkum, and D. M. Rayner, Phys. Rev. Lett. 91, 203004 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.203004
6.
6. B. Rudek, S.-K. Son, L. Foucar, S. W. Epp, B. Erk, R. Hartmann, M. Adolph, R. Andritschke, A. Aquila, N. Berrah et al., Nat. Photonics 6, 858865 (2012).
http://dx.doi.org/10.1038/nphoton.2012.261
7.
7. B. Erk, D. Rolles, L. Foucar, B. Rudek, S. W. Epp, M. Cryle, C. Bostedt, S. Schorb, J. Bozek, A. Rouzee et al., Phys. Rev. Lett. 110, 053003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.053003
8.
8. L. Fang, T. Osipov, B. Murphy, F. Tarantelli, E. Kukk, J. P. Cryan, M. Glownia, P. H. Bucksbaum, R. N. Coffee, M. Chen, C. Buth, and N. Berrah, Phys. Rev. Lett. 109, 263001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.263001
9.
9. K. Motomura, E. Kukk, S. Wada, K. Nagaya, H. Fukuzawa, S. Mondal, T. Tachibana, Y. Ito, R. Koga, and T. Sakai et al., J. Phys.: Conf. Ser. 488, 032043 (2014).
http://dx.doi.org/10.1088/1742-6596/488/3/032043
10.
10. K. Motomura, H. Fukuzawa, S. K. Son, S. Mondal, T. Tachibana, Y. Ito, M. Kimura, K. Nagaya, T. Sakai, K. Matsunami et al., J. Phys. B: At., Mol. Opt. Phys. 46, 164024 (2013).
http://dx.doi.org/10.1088/0953-4075/46/16/164024
11.
11. B. F. Murphy, T. Osipov, Z. Jurek, L. Fang, S. K. Son, M. Mucke, J. H. D. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi et al., Nat. Commun. 5, 4281 (2014).
http://dx.doi.org/10.1038/ncomms5281
12.
12. K. J. Gaffney and H. N. Chapman, Science 316, 14441448 (2007).
http://dx.doi.org/10.1126/science.1135923
13.
13. A. Fratalocchi and G. Ruocco, Phys. Rev. Lett. 106, 105504 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.105504
14.
14. A. Debnarova, S. Techert, and S. Schmatz, Phys. Chem. Chem. Phys. 16, 792798 (2014).
http://dx.doi.org/10.1039/c3cp54011a
15.
15. L. Lomb, T. R. M. Barends, S. Kassemeyer, A. Aquila, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, B. Rudek, D. Rolles et al., Phys. Rev. B 84, 214111 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214111
16.
16. J. Gaudin, O. Peyrusse, J. Chalupský, M. Toufarová, L. Vyšín, V. Hájková, R. Sobierajski, T. Burian, S. Dastjani-Farahani, A. Graf et al., Phys. Rev. B 86, 024103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.024103
17.
17. J. Gaudin, N. Medvedev, J. Chalupský, T. Burian, S. Dastjani-Farahani, V. Hájková, M. Harmand, H. O. Jeschke, L. Juha, M. Jurek et al., Phys. Rev. B 88, 060101 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.060101
18.
18. I. V. Hertel, T. Laarmann, and C. P. Schulz, in Advances in Atomic, Molecular, and Optical Physics, edited by B. Bederson and H. Walther (Academic Press, 2005), Vol. 50, pp. 219286.
19.
19. M. Hoener, L. Fang, O. Kornilov, O. Gessner, S. T. Pratt, M. Gühr, E. P. Kanter, C. Blaga, C. Bostedt, J. D. Bozek et al., Phys. Rev. Lett. 104, 253002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.253002
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4896656 for detailed discussions on computational methods, proposed experimental condition to create C6060+, symmetric explosion of C6060+, and supplemental figures and table. [Supplementary Material]
21.
21. R. Sahnoun, K. Nakai, Y. Sato, H. Kono, Y. Fujimura, and M. Tanaka, J. Chem. Phys. 125, 184306184310 (2006).
http://dx.doi.org/10.1063/1.2371109
22.
22. S. Diaz-Tendero, M. Alcami, and F. Martín, J. Chem. Phys. 123, 184306 (2005).
http://dx.doi.org/10.1063/1.2104467
23.
23. Y. Wang, H. Zettergren, M. Alcamí, and F. Martín, Phys. Rev. A 80, 033201 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.033201
24.
24. T. A. Beu, L. Horváth, I. Ghişoiu, Phys. Rev. B 79, 054112 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054112
25.
25. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 72607268 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
26.
26. C. Köhler, G. Seifert, and T. Frauenheim, Chem. Phys. 309, 2331 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.03.034
27.
27. M. B. Sowa-Resat, P. A. Hintz, and S. L. Anderson, J. Phys. Chem. 99, 1073610741 (1995).
http://dx.doi.org/10.1021/j100027a010
28.
28. K. Endo, S. Koizumi, T. Otsuka, T. Ida, T. Morohashi, J. Onoe, A. Nakao, E. Z. Kurmaev, A. Moewes, and D. P. Chong, J. Phys. Chem. A 107, 94039408 (2003).
http://dx.doi.org/10.1021/jp0345710
29.
29. L. Chen, S. Martin, J. Bernard, and R. Brédy, Phys. Rev. Lett. 98, 193401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.193401
30.
30. S. Martin, L. Chen, A. Salmoun, B. Li, J. Bernard, and R. Brédy, Phys. Rev. A 77, 043201 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.043201
31.
31. H. Katayanagi and K. Mitsuke, J. Chem. Phys. 133, 081101 (2010).
http://dx.doi.org/10.1063/1.3475515
32.
32.We assumed that the core cluster has 1.5 C–C bonds/atom as C6060+.
33.
33. M. Jones Jr., Organic Chemistry, 2nd ed. (W.W. Norton & Company, Inc., New York, 2000).
34.
34. C. Nordling and J. Österman, Physics Handbook for Science and Engineering (Studentlitteratur, Lund, Sweden, 2006).
35.
35. A. Matsuda, M. Fushitani, R. D. Thomas, V. Zhaunerchyk, and A. Hishikawa, J. Phys. Chem. A 113, 22542260 (2009).
http://dx.doi.org/10.1021/jp806466x
36.
36. K. Ueda and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 38, S839 (2005).
http://dx.doi.org/10.1088/0953-4075/38/9/025
37.
37. L. J. Frasinski, K. Codling, and P. A. Hahterly, Science 246, 10291031 (1989).
http://dx.doi.org/10.1126/science.246.4933.1029
38.
38. O. Kornilov, M. Eckstein, M. Rosenblatt, C. P. Schulz, K. Motomura, A. Rouzée, J. Klei, L. Foucar, M. Siano et al., J. Phys. B: At., Mol. Opt. Phys. 46, 164028 (2013).
http://dx.doi.org/10.1088/0953-4075/46/16/164028
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/12/10.1063/1.4896656
Loading
/content/aip/journal/jcp/141/12/10.1063/1.4896656
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/12/10.1063/1.4896656
2014-09-30
2016-12-11

Abstract

To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out classical trajectory calculations on the fragmentation dynamics of C + ( = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C + first ejects singly and multiply charged fast atomic cations C + ( ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporations of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C + by ion impact or X-ray free electron laser is larger than 100 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/12/1.4896656.html;jsessionid=zRLImM7VeKOESxsXLyUFTryj.x-aip-live-03?itemId=/content/aip/journal/jcp/141/12/10.1063/1.4896656&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/12/10.1063/1.4896656&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/12/10.1063/1.4896656'
Right1,Right2,Right3,