Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Martin, L. Chen, A. Denis, and J. Désesquelles, Phys. Rev. A 59, R1734R1737 (1999).
2. A. Brenac, F. Chandezon, H. Lebius, A. Pesnelle, S. Tomita, and B. A. Huber, Phys. Scr. 1999(T80B), 195.
3. S. Tomita, H. Lebius, A. Brenac, F. Chandezon, and B. A. Huber, Phys. Rev. A 65, 053201 (2002).
4. J. Kou, V. Zhakhovskii, S. Sakabe, K. Nishihara, S. Shimizu, S. Kawato, M. Hashida, K. Shimizu, S. Bulanov, Y. Izawa, Y. Kato, and N. Nakashima, J. Chem. Phys. 112, 50125020 (2000).
5. V. R. Bhardwaj, P. B. Corkum, and D. M. Rayner, Phys. Rev. Lett. 91, 203004 (2003).
6. B. Rudek, S.-K. Son, L. Foucar, S. W. Epp, B. Erk, R. Hartmann, M. Adolph, R. Andritschke, A. Aquila, N. Berrah et al., Nat. Photonics 6, 858865 (2012).
7. B. Erk, D. Rolles, L. Foucar, B. Rudek, S. W. Epp, M. Cryle, C. Bostedt, S. Schorb, J. Bozek, A. Rouzee et al., Phys. Rev. Lett. 110, 053003 (2013).
8. L. Fang, T. Osipov, B. Murphy, F. Tarantelli, E. Kukk, J. P. Cryan, M. Glownia, P. H. Bucksbaum, R. N. Coffee, M. Chen, C. Buth, and N. Berrah, Phys. Rev. Lett. 109, 263001 (2012).
9. K. Motomura, E. Kukk, S. Wada, K. Nagaya, H. Fukuzawa, S. Mondal, T. Tachibana, Y. Ito, R. Koga, and T. Sakai et al., J. Phys.: Conf. Ser. 488, 032043 (2014).
10. K. Motomura, H. Fukuzawa, S. K. Son, S. Mondal, T. Tachibana, Y. Ito, M. Kimura, K. Nagaya, T. Sakai, K. Matsunami et al., J. Phys. B: At., Mol. Opt. Phys. 46, 164024 (2013).
11. B. F. Murphy, T. Osipov, Z. Jurek, L. Fang, S. K. Son, M. Mucke, J. H. D. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi et al., Nat. Commun. 5, 4281 (2014).
12. K. J. Gaffney and H. N. Chapman, Science 316, 14441448 (2007).
13. A. Fratalocchi and G. Ruocco, Phys. Rev. Lett. 106, 105504 (2011).
14. A. Debnarova, S. Techert, and S. Schmatz, Phys. Chem. Chem. Phys. 16, 792798 (2014).
15. L. Lomb, T. R. M. Barends, S. Kassemeyer, A. Aquila, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, B. Rudek, D. Rolles et al., Phys. Rev. B 84, 214111 (2011).
16. J. Gaudin, O. Peyrusse, J. Chalupský, M. Toufarová, L. Vyšín, V. Hájková, R. Sobierajski, T. Burian, S. Dastjani-Farahani, A. Graf et al., Phys. Rev. B 86, 024103 (2012).
17. J. Gaudin, N. Medvedev, J. Chalupský, T. Burian, S. Dastjani-Farahani, V. Hájková, M. Harmand, H. O. Jeschke, L. Juha, M. Jurek et al., Phys. Rev. B 88, 060101 (2013).
18. I. V. Hertel, T. Laarmann, and C. P. Schulz, in Advances in Atomic, Molecular, and Optical Physics, edited by B. Bederson and H. Walther (Academic Press, 2005), Vol. 50, pp. 219286.
19. M. Hoener, L. Fang, O. Kornilov, O. Gessner, S. T. Pratt, M. Gühr, E. P. Kanter, C. Blaga, C. Bostedt, J. D. Bozek et al., Phys. Rev. Lett. 104, 253002 (2010).
20.See supplementary material at for detailed discussions on computational methods, proposed experimental condition to create C6060+, symmetric explosion of C6060+, and supplemental figures and table. [Supplementary Material]
21. R. Sahnoun, K. Nakai, Y. Sato, H. Kono, Y. Fujimura, and M. Tanaka, J. Chem. Phys. 125, 184306184310 (2006).
22. S. Diaz-Tendero, M. Alcami, and F. Martín, J. Chem. Phys. 123, 184306 (2005).
23. Y. Wang, H. Zettergren, M. Alcamí, and F. Martín, Phys. Rev. A 80, 033201 (2009).
24. T. A. Beu, L. Horváth, I. Ghişoiu, Phys. Rev. B 79, 054112 (2009).
25. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 72607268 (1998).
26. C. Köhler, G. Seifert, and T. Frauenheim, Chem. Phys. 309, 2331 (2005).
27. M. B. Sowa-Resat, P. A. Hintz, and S. L. Anderson, J. Phys. Chem. 99, 1073610741 (1995).
28. K. Endo, S. Koizumi, T. Otsuka, T. Ida, T. Morohashi, J. Onoe, A. Nakao, E. Z. Kurmaev, A. Moewes, and D. P. Chong, J. Phys. Chem. A 107, 94039408 (2003).
29. L. Chen, S. Martin, J. Bernard, and R. Brédy, Phys. Rev. Lett. 98, 193401 (2007).
30. S. Martin, L. Chen, A. Salmoun, B. Li, J. Bernard, and R. Brédy, Phys. Rev. A 77, 043201 (2008).
31. H. Katayanagi and K. Mitsuke, J. Chem. Phys. 133, 081101 (2010).
32.We assumed that the core cluster has 1.5 C–C bonds/atom as C6060+.
33. M. Jones Jr., Organic Chemistry, 2nd ed. (W.W. Norton & Company, Inc., New York, 2000).
34. C. Nordling and J. Österman, Physics Handbook for Science and Engineering (Studentlitteratur, Lund, Sweden, 2006).
35. A. Matsuda, M. Fushitani, R. D. Thomas, V. Zhaunerchyk, and A. Hishikawa, J. Phys. Chem. A 113, 22542260 (2009).
36. K. Ueda and J. H. D. Eland, J. Phys. B: At., Mol. Opt. Phys. 38, S839 (2005).
37. L. J. Frasinski, K. Codling, and P. A. Hahterly, Science 246, 10291031 (1989).
38. O. Kornilov, M. Eckstein, M. Rosenblatt, C. P. Schulz, K. Motomura, A. Rouzée, J. Klei, L. Foucar, M. Siano et al., J. Phys. B: At., Mol. Opt. Phys. 46, 164028 (2013).

Data & Media loading...


Article metrics loading...



To establish the fundamental understanding of the fragmentation dynamics of highly positive charged nano- and bio-materials, we carried out classical trajectory calculations on the fragmentation dynamics of C + ( = 20–60). We used the UB3LYP/3-21G level of density functional theory and the self-consistent charge density-functional based tight-binding theory. For ≥ 20, we found that a two-step explosion mechanism governs the fragmentation dynamics: C + first ejects singly and multiply charged fast atomic cations C + ( ≥ 1) via Coulomb explosions on a timescale of 10 fs to stabilize the remaining core cluster. Thermal evaporations of slow atomic and molecular fragments from the core cluster subsequently occur on a timescale of 100 fs to 1 ps. Increasing the charge makes the fragments smaller. This two-step mechanism governs the fragmentation dynamics in the most likely case that the initial kinetic energy accumulated upon ionization to C + by ion impact or X-ray free electron laser is larger than 100 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd