Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/12/10.1063/1.4896657
1.
1. Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987).
http://dx.doi.org/10.1073/pnas.84.19.6611
2.
2. D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
http://dx.doi.org/10.1021/jp970984n
3.
3. D. J. Wales and H. A. Scheraga, Science 285, 13681372 (1999).
http://dx.doi.org/10.1126/science.285.5432.1368
4.
4. T. V. Bogdan, D. J. Wales, and F. Calvo, J. Chem. Phys. 124, 044102 (2006).
http://dx.doi.org/10.1063/1.2148958
5.
5. V. A. Sharapov, D. Meluzzi, and V. A. Mandelshtam, Phys. Rev. Lett. 98, 105701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.105701
6.
6. V. A. Sharapov and V. A. Mandelshtam, J. Phys. Chem. A 111, 1028410291 (2007).
http://dx.doi.org/10.1021/jp072929c
7.
7. D. J. Wales, Chem. Phys. Lett. 584, 19 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.07.066
8.
8. D. J. Wales, Mol. Phys. 100, 32853305 (2002).
http://dx.doi.org/10.1080/00268970210162691
9.
9. D. J. Wales, Mol. Phys. 102, 891908 (2004).
http://dx.doi.org/10.1080/00268970410001703363
10.
10. D. J. Wales, Int. Rev. Phys. Chem. 25, 237282 (2006).
http://dx.doi.org/10.1080/01442350600676921
11.
11. G. C. Boulougouis and D. N. Theodorou, J. Chem. Phys. 127, 084903 (2007).
http://dx.doi.org/10.1063/1.2753153
12.
12. L. Xu and G. Henkelman, J. Chem. Phys. 129, 114104 (2008).
http://dx.doi.org/10.1063/1.2976010
13.
13. D. G. Tsalikis, N. Lempesis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Theory Comput. 6, 13071322 (2010).
http://dx.doi.org/10.1021/ct9004245
14.
14. N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011).
http://dx.doi.org/10.1063/1.3663207
15.
15. R. Terrell, M. Welborn, S. T. Chill, and G. Henkelman, J. Chem. Phys. 137, 014105 (2012).
http://dx.doi.org/10.1063/1.4730746
16.
16. D. J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).
17.
17. M. Kastner, Rev. Mod. Phys. 80, 167187 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.167
18.
18. A. Griewank and M. R. Osborne, SIAM J. Num. Anal. 20(4), 747773 (1983).
http://dx.doi.org/10.1137/0720050
19.
19. L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. 85(25), 5356 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5356
20.
20. K. Broderix, K. K. Bhattacharya, A. Cavagna, A. Zippelius, and I. Giardina, Phys. Rev. Lett. 85(25), 5360 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5360
21.
21. J. P. K. Doye and D. J. Wales, J. Chem. Phys. 116, 37773788 (2002).
http://dx.doi.org/10.1063/1.1436470
22.
22. J. P. K. Doye and D. J. Wales, J. Chem. Phys. 118(11), 52635264 (2003).
http://dx.doi.org/10.1063/1.1553754
23.
23. D. J. Wales and J. P. K. Doye, J. Chem. Phys. 119, 1240912416 (2003).
http://dx.doi.org/10.1063/1.1625644
24.
24. J. Nocedal, Math. Comput. 35, 773782 (1980).
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
25.
25. D. Liu and J. Nocedal, Math. Prog. 45, 503528 (1989).
http://dx.doi.org/10.1007/BF01589116
26.
26. S. A. Trygubenko and D. J. Wales, J. Chem. Phys. 120, 20822094 (2004).
http://dx.doi.org/10.1063/1.1636455
27.
27. D. J. Wales, J. Chem. Soc. Faraday Trans. 88, 653657 (1992).
http://dx.doi.org/10.1039/ft9928800653
28.
28. D. J. Wales, J. Chem. Soc. Faraday Trans. 89, 13051313 (1993).
http://dx.doi.org/10.1039/ft9938901305
29.
29. L. J. Munro and D. J. Wales, Phys. Rev. B 59, 39693980 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3969
30.
30. Y. Kumeda, L. J. Munro, and D. J. Wales, Chem. Phys. Lett. 341, 185194 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00334-7
31.
31. D. Mehta, Ph.D. thesis, The University of Adelaide, Australasian Digital Theses Program, 2009.
32.
32. D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini (SIAM, 2013).
33.
33. D. Mehta, Phys. Rev. E 84, 025702 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.025702
34.
34. D. Mehta, Adv. High Energy Phys. 2011, 263937 (2011).
http://dx.doi.org/10.1155/2011/263937
35.
35. M. Maniatis and D. Mehta, Eur. Phys. J. Plus 127, 91 (2012).
http://dx.doi.org/10.1140/epjp/i2012-12091-1
36.
36. D. Mehta, Y.-H. He, and J. D. Hauenstein, J. High Energy Phys. 1207, 018 (2012).
http://dx.doi.org/10.1007/JHEP07(2012)018
37.
37. C. Hughes, D. Mehta, and J.-I. Skullerud, Ann. Phys. 331, 188 (2013).
http://dx.doi.org/10.1016/j.aop.2012.12.011
38.
38. D. Mehta, J. D. Hauenstein, and M. Kastner, Phys. Rev. E 85, 061103 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.061103
39.
39. D. Martinez-Pedrera, D. Mehta, M. Rummel , and A. Westphal, J. High Energy Phys. 1306, 110 (2013).
http://dx.doi.org/10.1007/JHEP06(2013)110
40.
40. Y.-H. He, D. Mehta, M. Niemerg, M. Rummel, and A. Valeanu, J. High Energy Phys. 1307, 050 (2013).
http://dx.doi.org/10.1007/JHEP07(2013)050
41.
41. D. Mehta, D. A. Stariolo, and M. Kastner, Phys. Rev. E 87, 052143 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.052143
42.
42. B. Greene, D. Kagan, A. Masoumi, D. Mehta, E. J. Weinberg, and X. Xiao, Phys. Rev. D 88, 026005 (2013).
http://dx.doi.org/10.1103/PhysRevD.88.026005
43.
43. C. R. Gwaltney, Y. Lin, L. D. Simoni, and M. A. Stadtherr, Handbook of Granular Computing (Wiley, Chichester, UK, 2008), pp. 8196.
44.
44. F. H. Branin and S. K. Hoo, in Proceedings of the Conference on Numerical Methods for Nonlinear Optimisation, 1971.
45.
45. S. Smale, J. Math. Econom. 3, 107 (1976).
http://dx.doi.org/10.1016/0304-4068(76)90019-7
46.
46. H. B. Keller, Technical Report, DTIC Document, 1977.
47.
47. J. D. Hauenstein, I. Haywood, and A. C. Liddell, Jr., “An a posteriori certification algorithm for Newton homotopies,” in Proceedings of ISSAC 2014 (ACM, 2014), pp. 248255.
48.
48. J. D. Hauenstein and A. C. Liddell, Jr., “Certified predictor-corrector tracking for Newton homotopies,” PDF available online at http://www4.ncsu.edu/~jdhauens/preprints/hlCertifiedTracking.pdf.
49.
49. A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials (World Scientific, 2005).
50.
50. E. L. Allgower and K. Georg, Numerical Continuation Methods (Springer-Verlag, 1990).
51.
51. A. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems (Prentice Hall, 1987).
52.
52. H. B. Keller, Applications of Bifurcation Theory (Academic Press, NY, 1977), pp. 359384.
53.
53. W. C. Rheinboldt, SIAM J. Numer. Anal. 15, 111 (1978).
http://dx.doi.org/10.1137/0715001
54.
54. K. Georg, SIAM J. Sci. Stat. Comput. 2, 3550 (1981).
http://dx.doi.org/10.1137/0902004
55.
55. R. Glowinski, H. Keller, and L. Reinhart, SIAM J. Sci. Stat. Comput. 6(4), 793832 (1985).
http://dx.doi.org/10.1137/0906055
56.
56. M. Kastner and D. Mehta, Phys. Rev. Lett. 107, 160602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.160602
57.
57. J. E. Jones and A. E. Ingham, Proc. R. Soc. London A 107, 636653 (1925).
http://dx.doi.org/10.1098/rspa.1925.0047
58.
58. J. P. K. Doye and C. P. Massen, J. Chem. Phys. 122(8), 084105 (2005).
http://dx.doi.org/10.1063/1.1850468
59.
59. G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).
http://dx.doi.org/10.1063/1.480097
60.
60. J. Duncan, Q. Wu, K. Promislow, and G. Henkelman, J. Chem. Phys. 140, 194102 (2014).
http://dx.doi.org/10.1063/1.4875477
61.
61. W. Hao, J. D. Hauenstein, B. Hu, Y. Liu, A. J. Sommese, and Y.-T. Zhang, J. Sci. Comput. 53(2), 395413 (2012).
http://dx.doi.org/10.1007/s10915-012-9575-x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/12/10.1063/1.4896657
Loading
/content/aip/journal/jcp/141/12/10.1063/1.4896657
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/12/10.1063/1.4896657
2014-09-29
2016-09-26

Abstract

One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ4 model and atomic clusters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/12/1.4896657.html;jsessionid=cneMu19NysnDmpo5VQFt8uXx.x-aip-live-03?itemId=/content/aip/journal/jcp/141/12/10.1063/1.4896657&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/12/10.1063/1.4896657&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/12/10.1063/1.4896657'
Right1,Right2,Right3,