Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/13/10.1063/1.4896965
1.
1. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).
http://dx.doi.org/10.1021/ie8019032
2.
2. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, J. Environ. Sci. 20, 14 (2008).
http://dx.doi.org/10.1016/S1001-0742(08)60002-9
3.
3. X. He and M.-B. Hägg, J. Membr. Sci. 378, 1 (2011).
http://dx.doi.org/10.1016/j.memsci.2010.10.070
4.
4. X. He, J. Arvid Lie, E. Sheridan, and M.-B. Hägg, Energy Proc. 1, 261 (2009).
http://dx.doi.org/10.1016/j.egypro.2009.01.037
5.
5. Z. Yong, V. Mata, and A. R. E. Rodrigues, Sep. Purif. Technol. 26, 195 (2002).
http://dx.doi.org/10.1016/S1383-5866(01)00165-4
6.
6. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2002), Vol. 1.
7.
7. C. Nieto-Draghi, T. de Bruin, J. Pérez-Pellitero, J. B. Avalos, and A. D. Mackie, J. Chem. Phys. 126, 064509 (2007).
http://dx.doi.org/10.1063/1.2434960
8.
8. B. Wang, P. Cummings, and D. Evans, Mol. Phys. 75, 1345 (1992).
http://dx.doi.org/10.1080/00268979200101021
9.
9. Z. Liang and H.-L. Tsai, Mol. Phys. 108, 1285 (2010).
http://dx.doi.org/10.1080/00268971003670873
10.
10. G. Scalabrin, P. Marchi, F. Finezzo, and R. Span, J. Phys. Chem. Ref. Data 35, 1549 (2006).
http://dx.doi.org/10.1063/1.2213631
11.
11. T. T. Trinh, T. J. Vlugt, M. B. Hagg, D. Bedeaux, and S. Kjelstrup, Front. Chem. 1, 38 (2013).
http://dx.doi.org/10.3389/fchem.2013.00038
12.
12. S.-Y. Lee and S.-J. Park, J. Colloid Interface Sci. 389, 230 (2013).
http://dx.doi.org/10.1016/j.jcis.2012.09.018
13.
13. L. Hamon, N. Heymans, P. L. Llewellyn, V. Guillerm, A. Ghoufi, S. Vaesen, G. Maurin, C. Serre, G. De Weireld, and G. D. Pirngruber, Dalton Trans. 41, 4052 (2012).
http://dx.doi.org/10.1039/c2dt12102f
14.
14. Y. Liu and J. Wilcox, Environ. Sci. Technol. 46, 1940 (2012).
http://dx.doi.org/10.1021/es204071g
15.
15. X. Peng, D. Cao, and W. Wang, Chem. Eng. Sci. 66, 2266 (2011).
http://dx.doi.org/10.1016/j.ces.2011.02.044
16.
16. T. Trinh, D. Bedeaux, J.-M. Simon, and S. Kjelstrup, Chem. Phys. Lett. 612, 214 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.08.026
17.
17. C. Murthy, K. Singer, and I. McDonald, Mol. Phys. 44, 135 (1981).
http://dx.doi.org/10.1080/00268978100102331
18.
18. J. G. Harris and K. H. Yung, J. Phys. Chem. 99, 12021 (1995).
http://dx.doi.org/10.1021/j100031a034
19.
19. J. J. Potoff and J. I. Siepmann, AIChE J. 47, 1676 (2001).
http://dx.doi.org/10.1002/aic.690470719
20.
20. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989).
21.
21. S. Plimpton, P. Crozier, and A. Thompson, “LAMMPS-large-scale atomic/molecular massively parallel simulator,” Sandia National Laboratories (2007).
22.
22. R. W. Hockney and J. W. Eastwood, Computer Simulation using Particles (CRC Press, 1988).
23.
23. M. Frisch, G. Trucks, H. Schlegel et al., Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford, CT, 2009.
24.
24. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
25.
25. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
26.
26. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
http://dx.doi.org/10.1063/1.447079
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4896965 for cutoff conditions, structures of CO2, tabulated data of thermal conductivities, and equation of state. [Supplementary Material]
28.
28. M. Bugel and G. Galliero, Chem. Phys. 352, 249 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.06.013
29.
29. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).
http://dx.doi.org/10.1063/1.473271
30.
30. M. Zhang, E. Lussetti, L. E. de Souza, and F. Müller-Plathe, J. Phys. Chem. B 109, 15060 (2005).
http://dx.doi.org/10.1021/jp0512255
31.
31. B. Hafskjold, T. Ikeshoji, and S. K. Ratkje, Mol. Phys. 80, 1389 (1993).
http://dx.doi.org/10.1080/00268979300103101
32.
32. I. Inzoli, J.-M. Simon, S. Kjelstrup, and D. Bedeaux, J. Colloid Interface Sci. 313, 563 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.04.081
33.
33. F. Römer, A. Lervik, and F. Bresme, J. Chem. Phys. 137, 074503 (2012).
http://dx.doi.org/10.1063/1.4739855
34.
34. I. Inzoli, J. M. Simon, D. Bedeaux, and S. Kjelstrup, J. Phys. Chem. B 112, 14937 (2008).
http://dx.doi.org/10.1021/jp804778u
35.
35. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).
http://dx.doi.org/10.1063/1.463940
36.
36. M. Saharay and S. Balasubramanian, J. Phys. Chem. B 111, 387 (2007).
http://dx.doi.org/10.1021/jp065679t
37.
37. Z. Liang and H.-L. Tsai, Fluid Phase Equilib. 293, 196 (2010).
http://dx.doi.org/10.1016/j.fluid.2010.03.007
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/13/10.1063/1.4896965
Loading
/content/aip/journal/jcp/141/13/10.1063/1.4896965
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/13/10.1063/1.4896965
2014-10-03
2016-12-05

Abstract

We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO) using nonequilibrium molecular dynamics in the temperature range 300–1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/13/1.4896965.html;jsessionid=95J5Hs4cVQ9jd53stYOH2IUi.x-aip-live-06?itemId=/content/aip/journal/jcp/141/13/10.1063/1.4896965&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/13/10.1063/1.4896965&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/13/10.1063/1.4896965'
Right1,Right2,Right3,