Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/14/10.1063/1.4896943
1.
1. P. N. Pusey, in Liquids, Freezing and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Elsevier, Amsterdam, 1991), Chap. 10.
2.
2. W. C. K. Poon and P. N. Pusey, in Observation, Prediction, and Simulation of Phase Transition in Complex Fluids, edited by M. Baus, L. F. Rull, and J.-P. Ryckaert (Kluwer Akad. Publ., Dordrecht, 1995).
3.
3. W. C. K. Poon, E. R. Weeks, and C. P. Royall, Soft Matter 8, 21 (2012).
http://dx.doi.org/10.1039/c1sm06083j
4.
4. C. P. Royall, W. C. K. Poon, and E. R. Weeks, Soft Matter 9, 17 (2013).
http://dx.doi.org/10.1039/c2sm26245b
5.
5. W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
http://dx.doi.org/10.1063/1.1670641
6.
6. J. M. Polson and D. Frenkel, J. Chem. Phys. 109, 318 (1999).
http://dx.doi.org/10.1063/1.476566
7.
7. J. R. Errington, J. Chem. Phys. 120, 3130 (2004).
http://dx.doi.org/10.1063/1.1642591
8.
8. T. Zykova-Timan, J. Horbach, and K. Binder, J. Chem. Phys. 133, 014705 (2010).
http://dx.doi.org/10.1063/1.3455504
9.
9. P. N. Pusey and W. van Megen, Nature (London) 320, 340 (1986).
http://dx.doi.org/10.1038/320340a0
10.
10. W. van Megen and S. M. Underwood, Phys. Rev. E 49, 4206 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.4206
11.
11. W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).
12.
12. W. Götze, Complex Dynamics of Glass-forming Liquids: A Mode Coupling Theory (Oxford University Press, Oxford, 2009).
13.
13. K. Binder and W. Kob, Glassy-materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2011).
14.
14. D. M. Herlach, I. Klassen, P. Wette, and D. Holland-Moritz, J. Phys.: Condens. Matter 21, 153101 (2010).
http://dx.doi.org/10.1088/0953-8984/22/15/153101
15.
15. Z. Wang, F. Wang, Z. Zheng, and Y. Han, Science 338, 87 (2012).
http://dx.doi.org/10.1126/science.1224763
16.
16. J. Hernandez-Guzman and E. R. Weeks, Proc. Natl. Acad. Sci. U.S.A. 106, 15198 (2009).
http://dx.doi.org/10.1073/pnas.0904682106
17.
17. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
18.
18. Polymer Thermodynamics: Liquid Polymer-containing Mixtures, edited by S. Enders and B. A. Wolf (Springer, Berlin, 2011).
19.
19. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
20.
20. M. Fuchs and K. S. Schweizer, J. Phys.: Condens. Matter 14, R239 (2002).
http://dx.doi.org/10.1088/0953-8984/14/12/201
21.
21. P. G. Bolhuis, E. J. Meijer, and A. A. Louis, Phys. Rev. Lett. 90, 068304 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.068304
22.
22. S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
http://dx.doi.org/10.1063/1.1740347
23.
23. S. Asakura and F. Oosawa, J. Polym. Sci. 33, 183 (1958).
http://dx.doi.org/10.1002/pol.1958.1203312618
24.
24. A. Vrij, Pure Appl. Chem. 48, 471 (1976).
http://dx.doi.org/10.1351/pac197648040471
25.
25. S. M. Ilett, A. Orrock, W. C. K. Poon, and P. N. Pusey, Phys. Rev. E 51, 1344 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.1344
26.
26. W. C. K. Poon, J. Phys.: Condens. Matter 14, R859 (2002).
http://dx.doi.org/10.1088/0953-8984/14/33/201
27.
27. J. P. Hansen and I. McDonald, Theory of Simple Liquids (Academic Press, San Diego, 1986).
28.
28. B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, and L. G. MacDowell, J. Chem. Phys. 128, 104501 (2008).
http://dx.doi.org/10.1063/1.2837291
29.
29. D. G. A. L. Aarts, M. Schmidt, and H. N. Lekkerkerker, Science 304, 847 (2004).
http://dx.doi.org/10.1126/science.1097116
30.
30. C. P. Royall, D. G. A. L. Aarts, and H. Tanaka, Nat. Phys. 3, 636 (2007).
http://dx.doi.org/10.1038/nphys679
31.
31. Y. Hennequin, D. G. A. L. Aarts, J. O. Indekeu, H. N. W. Lekkerkerker, and D. Bonn, Phys. Rev. Lett. 100, 178305 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.178305
32.
32. H. N. W. Lekkerkerker, V. W. A. de Willeneuve, J. W. J. de Folter, M. Schmidt, Y. Hennequin, D. Bonn, J. O. Indekeu, and D. G. A. L. Aarts, Eur. Phys. J. B 64, 341 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00135-8
33.
33. D. G. A. L. Aarts, R. P. A. Dullens, and H. N. W. Lekkerkerker, New J. Phys. 7, 40 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/040
34.
34. A. E. Bailey, W. C. K. Poon, R. J. Christianson et al., Phys. Rev. Lett. 99, 205701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.205701
35.
35. A. P. Gast, C. K. Hall, and W. B. Russell, J. Colloid Interface Sci. 96, 251 (1983).
http://dx.doi.org/10.1016/0021-9797(83)90027-9
36.
36. H. N. W. Lekkerkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20, 559 (1992).
http://dx.doi.org/10.1209/0295-5075/20/6/015
37.
37. M. Dijkstra, J. M. Brader, and R. Evans, J. Phys.: Condens. Matter 11, 10079 (1999).
http://dx.doi.org/10.1088/0953-8984/11/50/304
38.
38. J. M. Brader, R. Evans, and M. Schmidt, Mol. Phys. 101, 3249 (2003).
http://dx.doi.org/10.1080/00268970310001619313
39.
39. I. K. Snook, The Langevin and Generalized Langevin Approach to the Dynamics of Atomic Polymeric and Colloidal Systems (Elsevier, Amsterdam, 2007).
40.
40. A. Winkler, P. Virnau, K. Binder, R. G. Winkler, and G. Gompper, J. Chem. Phys. 138, 054901 (2013).
http://dx.doi.org/10.1063/1.4789267
41.
41. H. N. W. Lekkerkerker and A. Stroobants, Nuovo Cimento D 16, 949 (1994).
http://dx.doi.org/10.1007/BF02458781
42.
42. P. G. Bolhuis, A. Stroobants, D. Frenkel, and H. N. W. Lekkerkerker, J. Chem. Phys. 107, 1551 (1997).
http://dx.doi.org/10.1063/1.474508
43.
43. Y. Chen and K. Schweizer, J. Chem. Phys. 117, 1351 (2002).
http://dx.doi.org/10.1063/1.1485071
44.
44. Y. Chen and K. Schweizer, J. Phys. Chem. B 108, 6687 (2004).
http://dx.doi.org/10.1021/jp036613q
45.
45. W. Lu and H. R. Ma, Eur. Phys. J. E 16, 225 (2005).
http://dx.doi.org/10.1140/epje/e2005-00024-y
46.
46. S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006).
http://dx.doi.org/10.1063/1.2202853
47.
47. A. Cuetos, B. Martinez-Haya, S. Lago, and L. Rull, Phys. Rev. E 75, 061701 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.061701
48.
48. S. Jungblut, R. Tuinier, K. Binder, and T. Schilling, J. Chem. Phys. 127, 244909 (2007).
http://dx.doi.org/10.1063/1.2815805
49.
49. T. Schilling, S. Dorosz, M. Radu, M. Mathew, S. Jungblut, and K. Binder, Eur. Phys. J. Spec. Top. 222, 2039 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02074-y
50.
50. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993).
51.
51. Z. Dogic and S. Fraden, Curr. Opin. Colloid Interface Sci. 11, 47 (2006).
http://dx.doi.org/10.1016/j.cocis.2005.10.004
52.
52. H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction (Springer, Berlin, 2011).
53.
53. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 52, 1670 (1970).
http://dx.doi.org/10.1063/1.1673203
54.
54. K. R. Hall, J. Chem. Phys. 57, 2252 (1972).
http://dx.doi.org/10.1063/1.1678576
55.
55. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).
http://dx.doi.org/10.1063/1.448024
56.
56. D. G. A. L. Aarts, R. Tuinier, and H. N. W. Lekkerkerker, J. Phys.: Condens. Matter 14, 7551 (2002).
http://dx.doi.org/10.1088/0953-8984/14/33/301
57.
57. H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31, 369 (1959).
http://dx.doi.org/10.1063/1.1730361
58.
58. E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983).
http://dx.doi.org/10.1063/1.445847
59.
59. E. Eisenriegler, A. Hanke, and S. Dietrich, Phys. Rev. E 54, 1134 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.1134
60.
60. L. Schäfer, Excluded Volume Effects in Polymer Solutions (Springer, Berlin, 1999).
61.
61. G. J. Fleer and R. Tuinier, Phys. Rev. E 76, 041802 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041802
62.
62. R. Tuinier, P. A. Smith, W. C. K. Poon, S. U. Egelhaaf, D. G. A. L. Aarts, H. N. W. Lekkerkerker, and G. J. Fleer, EPL 82, 68002 (2008).
http://dx.doi.org/10.1209/0295-5075/82/68002
63.
63. E. H. A. de Hoog and H. N. W. Lekkerkerker, J. Phys. Chem. B 103, 5274 (1999).
http://dx.doi.org/10.1021/jp990061n
64.
64. P. G. Bolhuis, A. A. Louis, and J. P. Hansen, Phys. Rev. Lett. 89, 128302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.128302
65.
65. M. Dijkstra and R. van Roij, Phys. Rev. Lett. 89, 208303 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.208303
66.
66. M. Schmidt, H. Löwen, J. M. Brader, and R. Evans, J. Phys.: Condens. Matter 14, 9353 (2002).
http://dx.doi.org/10.1088/0953-8984/14/40/323
67.
67. M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
http://dx.doi.org/10.1103/RevModPhys.46.597
68.
68. J. Zinn-Justin, Phys. Rep. 344, 159 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00126-5
69.
69. K. Binder and E. Luijten, Phys. Rep. 344, 179 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00127-7
70.
70. R. L. C. Vink and J. Horbach, J. Chem. Phys. 121, 3293 (2004).
http://dx.doi.org/10.1063/1.1773771
71.
71. R. L. C. Vink, J. Horbach, and K. Binder, Phys. Rev. E 71, 011401 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.011401
72.
72. F. Lo Verso, R. L. C. Vink, D. Pini, and L. Reatto, Phys. Rev. E 73, 061407 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.061407
73.
73. A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).
http://dx.doi.org/10.1080/00018739500101536
74.
74. M. Dijkstra and R. van Roij, J. Phys.: Condens. Matter 17, S3507 (2005).
http://dx.doi.org/10.1088/0953-8984/17/45/041
75.
75. M. Dijkstra, R. van Roij, R. Roth, and A. Fortini, Phys. Rev. E 74, 041404 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.041404
76.
76. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002).
77.
77. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009).
78.
78. P. Virnau and M. Müller, J. Chem. Phys. 120, 10925 (2004).
http://dx.doi.org/10.1063/1.1739216
79.
79. C. Borgs and R. Kotecky, J. Stat. Phys. 61, 79 (1990).
http://dx.doi.org/10.1007/BF01013955
80.
80. K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981).
http://dx.doi.org/10.1007/BF01293604
81.
81. K. Binder, Phys. Rev. A 25, 1699 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.1699
82.
82. J. Zausch, P. Virnau, K. Binder, J. Horbach, and R. Vink, J. Chem. Phys. 130, 064906 (2009).
http://dx.doi.org/10.1063/1.3071197
83.
83. J. A. Barker and J. Henderson, J. Chem. Phys. 47, 4714 (1967).
http://dx.doi.org/10.1063/1.1701689
84.
84. B. M. Mognetti, P. Virnau, L. Yelash, W. Paul, K. Binder, M. Müller, and L. G. MacDowell, J. Chem. Phys. 130, 044101 (2009).
http://dx.doi.org/10.1063/1.3050353
85.
85. B. M. Mognetti, M. Oettel, L. Yelash, P. Virnau, W. Paul, and K. Binder, Phys. Rev. E 77, 041506 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041506
86.
86. R. Tuinier, D. G. A. L. Aarts, H. H. Wensink, and H. N. W. Lekkerkerker, Phys. Chem. Chem. Phys. 5, 3707 (2003).
http://dx.doi.org/10.1039/b305244c
87.
87. B.-H. Chen, B. Payandeh, and M. Robert, Phys. Rev. E 62, 2369 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.2369
88.
88. M. E. Fisher, Phys. Rev. 170, 257 (1968).
http://dx.doi.org/10.1103/PhysRev.176.257
89.
89. P. G. Bolhuis, A. A. Louis, J.-P. Hansen, and E. J. Meijer, J. Chem. Phys. 114, 4296 (2001).
http://dx.doi.org/10.1063/1.1344606
90.
90. D. A. Kofke, J. Chem. Phys. 98, 4149 (1993).
http://dx.doi.org/10.1063/1.465023
91.
91. G. J. Fleer and R. Tuinier, Physica A 379, 52 (2007).
http://dx.doi.org/10.1016/j.physa.2006.12.052
92.
92. J. Schwarz-Linek, G. Dorken, A. Winkler, G. G. Wilson, N. T. Pham, C. E. French, T. Schilling, and W. C. K. Poon, EPL 80, 68003 (2010).
http://dx.doi.org/10.1209/0295-5075/89/68003
93.
93. T. Schilling, S. Jungblut, and M. A. Miller, Phys. Rev. Lett. 98, 108303 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.108303
94.
94. S. Meuer, L. Braun, T. Schilling, and R. Zentel, Polymer 50, 154 (2009).
http://dx.doi.org/10.1016/j.polymer.2008.10.039
95.
95. A. V. Kyrylyuk, M.-C. Hermant, T. Schilling, B. Klumperman, C. E. Konig, and P. van der Schoot, Nat. Nanotechnol. 6, 364 (2011).
http://dx.doi.org/10.1038/nnano.2011.40
96.
96. S. Jungblut, K. Binder, and T. Schilling, Comput. Phys. Commun. 179, 13 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.01.003
97.
97. A. A. Shvets and A. N. Semenov, J. Chem. Phys. 139, 054905 (2013).
http://dx.doi.org/10.1063/1.4816469
98.
98. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).
99.
99. W. Chen and D. G. Gray, Langmuir 18, 633 (2002).
http://dx.doi.org/10.1021/la001640i
100.
100. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.621
101.
101. R. L. C. Vink, J. Horbach, and K. Binder, J. Chem. Phys. 122, 134905 (2005).
http://dx.doi.org/10.1063/1.1866072
102.
102. K. Binder, M. Müller, F. Schmid, and A. Werner, Adv. Colloid Interface Sci. 94, 237 (2001).
http://dx.doi.org/10.1016/S0001-8686(01)00064-1
103.
103. K. Binder, J. Phys.: Conf. Ser. 510, 012002 (2014).
http://dx.doi.org/10.1088/1742-6596/510/1/012002
104.
104. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).
http://dx.doi.org/10.1063/1.435276
105.
105. D. Bedeaux and J. D. Weeks, J. Chem. Phys. 82, 972 (1985).
http://dx.doi.org/10.1063/1.448474
106.
106. E. M. Blokhuis, J. Chem. Phys. 130, 014706 (2009).
http://dx.doi.org/10.1063/1.3054346
107.
107. M. P. A. Fisher, D. S. Fisher, and J. D. Weeks, Phys. Rev. Lett. 48, 368 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.368
108.
108. A. O. Parry and C. J. Boulter, J. Phys.: Condens. Matter 6, 7199 (1994).
http://dx.doi.org/10.1088/0953-8984/6/36/004
109.
109. K. R. Mecke and S. Dietrich, Phys. Rev. E 59, 6766 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.6766
110.
110. A. Milchev and K. Binder, Europhys. Lett. 99, 81 (2002).
http://dx.doi.org/10.1209/epl/i2002-00162-1
111.
111. P. Tarazona and E. Chacon, Phys. Rev. B 70, 235407 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235407
112.
112. E. M. Fernandez, E. Chacon, P. Tarazona, A. O. Parry, and C. Rascon, Phys. Rev. Lett. 111, 096104 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.096104
113.
113. H. Müller-Krumbhaar, Phys. Lett. A 50, 27 (1974).
http://dx.doi.org/10.1016/0375-9601(74)90337-5
114.
114. F. Schmitz, P. Virnau, and K. Binder, Phys. Rev. E 87, 053302 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.053302
115.
115. A. Patrykiejew, S. Sokolowski, and K. Binder, Surf. Sci. Rep. 37, 207 (2000).
http://dx.doi.org/10.1016/S0167-5729(99)00011-4
116.
116. D. G. A. L. Aarts, J. H. van der Wiel, and H. N. W. Lekkerkerker, J. Phys.: Condens. Matter 15, S245 (2003).
http://dx.doi.org/10.1088/0953-8984/15/1/332
117.
117. W. K. Wijting, N. A. M. Bessleing, and M. A. Cohen Stuart, Phys. Rev. Lett. 90, 196101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.196101
118.
118. W. K. Wijting, N. A. M. Besseling, and M. A. Cohen Stuart, J. Phys. Chem. B 107, 10565 (2003).
http://dx.doi.org/10.1021/jp035019d
119.
119. A. de Virgiliis, R. L. C. Vink, J. Horbach, and K. Binder, Europhys. Lett. 77, 60002 (2007).
http://dx.doi.org/10.1209/0295-5075/77/60002
120.
120. K. Binder, J. Horbach, R. L. C. Vink, and A. De Virgiliis, Soft Matter 4, 1555 (2008).
http://dx.doi.org/10.1039/b802207k
121.
121. A. De Virgiliis, R. L. C. Vink, and K. Binder, Phys. Rev. E 78, 041604 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.041604
122.
122. M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matter 16, S4159 (2004).
http://dx.doi.org/10.1088/0953-8984/16/38/029
123.
123. A. Halperin, M. Tirrell, and T. P. Lodge, Adv. Polym. Sci. 100, 31 (1992).
http://dx.doi.org/10.1007/BFb0051635
124.
124. K. Binder and A. Milchev, J. Polym. Sci. B: Polym. Phys. 50, 1515 (2012).
http://dx.doi.org/10.1002/polb.23168
125.
125. R. Evans, J. Phys.: Condens. Matter 2, 8989 (1990).
http://dx.doi.org/10.1088/0953-8984/2/46/001
126.
126. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).
http://dx.doi.org/10.1088/0034-4885/62/12/201
127.
127. M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens. Matter 48, S3411 (2003).
http://dx.doi.org/10.1088/0953-8984/15/48/002
128.
128. R. L. C. Vink, K. Binder, and J. Horbach, Phys. Rev. E 73, 056118 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056118
129.
129. R. L. C. Vink, A. De Virgiliis, J. Horbach, and K. Binder, Phys. Rev. E 74, 031601 (2006);
http://dx.doi.org/10.1103/PhysRevE.74.031601
129.R. L. C. Vink, A. De Virgiliis, J. Horbach, and K. Binder, Phys. Rev. E 74, 069903 (2006) (Erratum).
http://dx.doi.org/10.1103/PhysRevE.74.069903
130.
130. A. O. Parry and R. Evans, Phys. Rev. Lett. 64, 439 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.439
131.
131. K. Binder, R. Evans, D. P. Landau, and A. M. Ferrenberg, Phys. Rev. E 53, 5023 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.5023
132.
132. K. Binder, D. P. Landau, and M. Müller, J. Stat. Phys. 110, 1411 (2003).
http://dx.doi.org/10.1023/A:1022173600263
133.
133. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
134.
134. J. M. Brader, R. Evans, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matter 14, L1 (2002).
http://dx.doi.org/10.1088/0953-8984/14/1/101
135.
135. P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matter 16, L1 (2004).
http://dx.doi.org/10.1088/0953-8984/16/1/L01
136.
136. P. P. F. Wessels, M. Schmidt, and H. Löwen, J. Phys.: Condens. Matter 16, S4169 (2004).
http://dx.doi.org/10.1088/0953-8984/16/38/030
137.
137. A. Fortini, M. Dijkstra, M. Schmidt, and P. P. F. Wessels, Phys. Rev. E 71, 051403 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.051403
138.
138. D. Deb, A. Winkler, M. H. Yamani, M. Oettel, P. Virnau, and K. Binder, J. Chem. Phys. 134, 214706 (2011).
http://dx.doi.org/10.1063/1.3593197
139.
139. T. Kerle, J. Klein, and K. Binder, Phys. Rev. Lett. 77, 1318 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1318
140.
140. R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B 25, 5112 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.5112
141.
141. H. van Beijeren, and I. Nolden, in Structure and Dynamics of Surfaces II, edited by J. F. van der Veen, M. A. van Hove (Springer, Berlin, 1988), p. 535.
142.
142. A. Winkler, A. Statt, P. Virnau, and K. Binder, Phys. Rev. E 87, 032307 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.032307
143.
143. A. Statt, A. Winkler, P. Virnau, and K. Binder, J. Phys.: Condens. Matter 24, 464122 (2012).
http://dx.doi.org/10.1088/0953-8984/24/46/464122
144.
144. D. Deb, D. Wilms, A. Winkler, P. Virnau, and K. Binder, Int. J. Mod. Phys. C 23, 1240011 (2012).
http://dx.doi.org/10.1142/S0129183112400116
145.
145. D. Deb, A. Winkler, P. Virnau, and K. Binder, J. Chem. Phys. 136, 134710 (2012).
http://dx.doi.org/10.1063/1.3699981
146.
146. K. Landfester, Annu. Rev. Mater. Res. 36, 231 (2006).
http://dx.doi.org/10.1146/annurev.matsci.36.032905.091025
147.
147. C. Kreuter, U. Siems, P. Nielaba, P. Leiderer, and A. Erbe, Eur. Phys. J. Spec. Top. 222, 2923 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02067-x
148.
148. D. Wilms, A. Winkler, P. Virnau, and K. Binder, Phys. Rev. Lett. 105, 045701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.045701
149.
149. A. Winkler, D. Wilms, P. Virnau, and K. Binder, J. Chem. Phys. 133, 164702 (2010).
http://dx.doi.org/10.1063/1.3502684
150.
150. A. Milchev, M. Müller, K. Binder, and D. P. Landau, Phys. Rev. Lett. 90, 136101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.136101
151.
151. A. Milchev, M. Müller, and K. Binder, Phys. Rev. E 72, 031603 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031603
152.
152. K. Schätzel and B. J. Ackerson, Phys. Rev. E 48, 3766 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.3766
153.
153. J. L. Harland and W. van Megen, Phys. Rev. E 55, 3054 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.3054
154.
154. S. Auer and D. Frenkel, Nature (London) 409, 1020 (2001).
http://dx.doi.org/10.1038/35059035
155.
155. L. Filion, R. Ni, D. Frenkel, and M. Dijkstra, J. Chem. Phys. 134, 134901 (2011).
http://dx.doi.org/10.1063/1.3572059
156.
156. T. Schilling, S. Dorosz, H. J. Schöpe, and G. Opletal, J. Phys.: Condens. Matter 23, 194120 (2011).
http://dx.doi.org/10.1088/0953-8984/23/19/194120
157.
157. M. Radu and T. Schilling, EPL 105, 26001 (2014).
http://dx.doi.org/10.1209/0295-5075/105/26001
158.
158. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000).
159.
159. A. Troester, M. Oettel, B. Block, P. Virnau, and K. Binder, J. Chem. Phys. 136, 064709 (2012).
http://dx.doi.org/10.1063/1.3685221
160.
160. G. Wulff, Z. Krist. Mineral. 34, 449 (1901).
161.
161. R. L. Davidchack, J. Chem. Phys. 133, 234701 (2010).
http://dx.doi.org/10.1063/1.3514144
162.
162. A. Härtel, M. Oettel, R. E. Rozas, S. U. Egelhaaf, J. Horbach, and H. Löwen, Phys. Rev. Lett. 108, 226101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.226101
163.
163. L. A. Fernandez, V. Martin-Mayer, B. Seoane, and P. Verrocchio, Phys. Rev. Lett. 108, 165701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.165701
164.
164. D. S. Fisher and J. D. Weeks, Phys. Rev. Lett. 52, 1077 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1077
165.
165. H. Biloni, in Physical Metallurgy, edited by B. W. Cahn and P. Hansen (North-Holland, Amsterdam, 1983), p. 477.
166.
166. S. Auer and D. Frenkel, J. Phys.: Condens. Matter 14, 7667 (2002).
http://dx.doi.org/10.1088/0953-8984/14/33/308
167.
167. A. Cacciuto, S. Auer, and D. Frenkel, Phys. Rev. Lett. 93, 166105 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.166105
168.
168. A. Cacciuto, S. Auer, and D. Frenkel, J. Chem. Phys. 119, 7467 (2003).
http://dx.doi.org/10.1063/1.1607307
169.
169. M. Dijkstra, Phys. Rev. Lett. 93, 108303 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.108303
170.
170. K. Binder, Rep. Prog. Phys. 50, 783 (1987).
http://dx.doi.org/10.1088/0034-4885/50/7/001
171.
171. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
http://dx.doi.org/10.1063/1.1699435
172.
172. J. E. Avron, J. E. Taylor, and R. K. P. Zia, J. Stat. Phys. 33, 493 (1983).
http://dx.doi.org/10.1007/BF01018830
173.
173. S. J. Kahn, O. L. Weaver, C. M. Sorensen, and A. Chakrabarti, Langmuir 28, 16015 (2012).
http://dx.doi.org/10.1021/la303894s
174.
174. T. Neuhaus, A. Härtel, M. Marechal, M. Schmiedeberg, and H. Löwen, Eur. Phys. J. Spec. Top. 223, 373 (2014).
http://dx.doi.org/10.1140/epjst/e2014-02097-x
175.
175. F. Turci, T. Schilling, M. H. Yamani, and M. Oettel, Eur. Phys. J. Spec. Top. 223, 421 (2014).
http://dx.doi.org/10.1140/epjst/e2014-02100-8
176.
176. Y. Vandecan and J. O. Indekeu, J. Chem. Phys. 128, 104903 (2008).
http://dx.doi.org/10.1063/1.2838183
177.
177. P. G. de Gennes, J. Phys. Chem. 88, 6469 (1984).
http://dx.doi.org/10.1021/j150670a004
178.
178. Y. Imry and S. K. Ma, Phys. Rev. Lett. 53, 1747 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.1747
179.
179. T. Nattermann in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998), p. 277.
180.
180. A. P. Y. Wong, S. B. Kim, W. I. Goldburg, and M. H. W. Chan, Phys. Rev. Lett. 70, 954 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.954
181.
181. M. Alvarez, D. Levesque, and J. J. Weis, Phys. Rev. E 60, 5495 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.5495
182.
182. L. Sarkisov and P. A. Monson, Phys. Rev. E 61, 7291 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.7231
183.
183. V. De Grandis, P. Gallo, and M. Rovere, Phys. Rev. E 70, 061505 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061505
184.
184. R. L. C. Vink, K. Binder, and H. Löwen, Phys. Rev. Lett. 97, 230601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.230603
185.
185. R. L. C. Vink, K. Binder, and H. Löwen, J. Phys.: Condens. Matter 20, 404222 (2008).
http://dx.doi.org/10.1088/0953-8984/20/40/404222
186.
186. R. L. C. Vink, T. Fischer, and K. Binder, Phys. Rev. E 82, 051134 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.051134
187.
187. A. Lederer, M. Franke, and H. J. Schöpe, Eur. Phys. J.: Spec. Top. 223, 389 (2014).
http://dx.doi.org/10.1140/epjst/e2014-02098-9
188.
188. K. Sandomirski, S. Walta, J. Dubbert, A. Allahyarov, A. B. Schofield, H. Löwen, W. Richtering, and S. U. Egelhaaf, Eur. Phys. J.: Spec. Top. 223, 439 (2014).
http://dx.doi.org/10.1140/epjst/e2014-02101-7
189.
189. M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, and T. Schilling, Phys. Rev. E 82, 051404 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.051404
190.
190. N. A. Clark, B. J. Ackerson, and A. J. Hurd, Phys. Rev. Lett. 50, 1459 (1985).
http://dx.doi.org/10.1103/PhysRevLett.50.1459
191.
191. F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castaneda-Priego, and S. U. Egelhaaf, Eur. Phys. J. Spec. Top. 222, 2995 (2013).
http://dx.doi.org/10.1140/epjst/e2013-02071-2
192.
192. D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, Phys. Rev. Lett. 97, 038301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.038301
193.
193. M. P. Lettinga, H. Wang, and J. K. G. Dhont, Phys. Rev. E 70, 061405 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061405
194.
194. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
http://dx.doi.org/10.1063/1.478857
195.
195. U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 110, 8033 (1999).
http://dx.doi.org/10.1063/1.478705
196.
196. M. Rex, H. H. Wensink, and H. Löwen, Phys. Rev. E 76, 021403 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.021403
197.
197. A. Malijevsky and A. J. Archer, J. Chem. Phys. 139, 144901 (2013).
http://dx.doi.org/10.1063/1.4823768
198.
198. B. D. Goddard, A. Nold, N. Savva, P. Yatsyshin, and S. Kalliadasis, J. Phys.: Condens. Matter 25, 035101 (2013).
http://dx.doi.org/10.1088/0953-8984/25/3/035101
199.
199. R. Evans, J. R. Henderson, and R. Roth, J. Chem. Phys. 121, 12074 (2004).
http://dx.doi.org/10.1063/1.1819316
200.
200. M. C. Stewart and R. Evans, Phys. Rev. E 71, 011602 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.011602
201.
201. A. Fortini, E. Sanz, and M. Dijkstra, Phys. Rev. E 78, 041402 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.041402
202.
202. Liquid Polymorphism, edited by H. E. Stanley (John Wiley and Sons, Hoboken, 2014).
203.
203. K. Binder, Proc. Natl. Acad. Sci. U.S.A. 111, 9374 (2014).
http://dx.doi.org/10.1073/pnas.1408908111
204.
204. H. Tanaka, Eur. Phys. J. E 35, 113 (2012).
http://dx.doi.org/10.1140/epje/i2012-12113-y
205.
205. N. A. Makynski and A. Z. Panagiotopoulos, J. Chem. Phys. 139, 024907 (2013).
http://dx.doi.org/10.1063/1.4811393
206.
206. S. P. Hlushak, Yu. V. Kalyuzhnyi, and P. T. Cummings, J. Chem. Phys. 128, 154907 (2008).
http://dx.doi.org/10.1063/1.2907723
207.
207. S. K. Das, S. Egorov, B. Trefz, P. Virnau, and K. Binder, Phys. Rev. Lett. 112, 198301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.198301
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/14/10.1063/1.4896943
Loading
/content/aip/journal/jcp/141/14/10.1063/1.4896943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/14/10.1063/1.4896943
2014-10-14
2016-12-10

Abstract

In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of “inverted swan neck”-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/14/1.4896943.html;jsessionid=nblsLreAlOIloQExkyv3blzG.x-aip-live-02?itemId=/content/aip/journal/jcp/141/14/10.1063/1.4896943&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/14/10.1063/1.4896943&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/14/10.1063/1.4896943'
Right1,Right2,Right3,