Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/14/10.1063/1.4897255
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446(7131), 60 (2007).
http://dx.doi.org/10.1038/nature05545
3.
3. F. Guinea, B. Horovitz, and P. Le Doussal, Phys. Rev. B 77(20), 205421 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205421
4.
4. R. Miranda and A. L. Vazquez de Parga, Nat. Nano 4(9), 549 (2009).
http://dx.doi.org/10.1038/nnano.2009.250
5.
5. A. L. Vázquez de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, J. J. Hinarejos, F. Guinea, and R. Miranda, Phys. Rev. Lett. 100(5), 056807 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.056807
6.
6. W. Z. Bao, F. Miao, Z. Chen, H. Zhang, W. Y. Jang, C. Dames, and C. N. Lau, Nat. Nanotechnol. 4(9), 562 (2009).
http://dx.doi.org/10.1038/nnano.2009.191
7.
7. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
8.
8. M. I. Katsnelson and A. K. Geim, Philos. Trans. Royal Soc., A 366(1863), 195 (2008).
http://dx.doi.org/10.1098/rsta.2007.2157
9.
9. R. Peierls, Ann. Inst. Henri Poincare 5, 177 (1935).
10.
10. L. Landau, Phys. Z. Sowjetunion 11, 26 (1937).
11.
11. L. Peliti and S. Leibler, Phys. Rev. Lett. 54(15), 1690 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1690
12.
12. N. D. Mermin, Phys. Rev. 176(1), 250 (1968).
http://dx.doi.org/10.1103/PhysRev.176.250
13.
13. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14(4), 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
14.
14. P. Liu and Y. W. Zhang, Appl. Phys. Lett. 94(23), 231912 (2009).
http://dx.doi.org/10.1063/1.3155197
15.
15. J. H. Los, L. M. Ghiringhelli, E. J. Meijer, and A. Fasolino, Phys. Rev. B 72(21), 214102 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214102
16.
16. A. Fasolino, J. H. Los, and M. I. Katsnelson, Nat. Mater. 6(11), 858 (2007).
http://dx.doi.org/10.1038/nmat2011
17.
17. P. G. De Gennes and C. Taupin, J. Phys. Chem. 86(13), 2294 (1982).
http://dx.doi.org/10.1021/j100210a011
18.
18. M. I. Katsnelson and A. Fasolino, Acc. Chem. Res. 46(1), 97 (2013).
http://dx.doi.org/10.1021/ar300117m
19.
19. K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B 64(23), 235406 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235406
20.
20. R. C. Thompson-Flagg, M. J. B. Moura, and M. Marder, Europhys. Lett. 85(4), 46002 (2009).
http://dx.doi.org/10.1209/0295-5075/85/46002
21.
21. F. L. Braghin and N. Hasselmann, Phys. Rev. B 82(3), 035407 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.035407
22.
22. A. I. Savvatimskiy, Carbon 43(6), 1115 (2005).
http://dx.doi.org/10.1016/j.carbon.2004.12.027
23.
23. J. Ma, D. Alfè, A. Michaelides, and E. Wang, Phys. Rev. B 80(3), 033407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033407
24.
24. Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett. 57(7), 791 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.791
25.
25. J. P. Kownacki and D. Mouhanna, Phys. Rev. E 79(4), 040101 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.040101
26.
26. P. Le Doussal and L. Radzihovsky, Phys. Rev. Lett. 69(8), 1209 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1209
27.
27. Z. Zhang, H. T. Davis, and D. M. Kroll, Phys. Rev. E 48(2), R651 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.R651
28.
28. M. J. Bowick and A. Travesset, Phys. Rep. 344(4–6), 255 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00128-9
29.
29. M. J. Bowick, S. M. Catterall, M. Falcioni, G. Thorleifsson, and K. N. Anagnostopoulos, J. Phys. I (France) 6(10), 1321 (1996).
http://dx.doi.org/10.1051/jp1:1996139
30.
30. D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134(18), 184704 (2011).
http://dx.doi.org/10.1063/1.3589163
31.
31. O. Akin-Ojo, Y. Song, and F. Wang, J. Chem. Phys. 129(6), 064108 (2008).
http://dx.doi.org/10.1063/1.2965882
32.
32. O. Akin-Ojo and F. Wang, J. Comput. Chem. 32, 453 (2011).
http://dx.doi.org/10.1002/jcc.21634
33.
33. O. Akin-Ojo and F. Wang, J. Phys. Chem. B 113(5), 1237 (2009).
http://dx.doi.org/10.1021/jp809324x
34.
34. P. E. Blöchl, Phys. Rev. B 50(24), 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
35.
35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
36.
36. K. V. Zakharchenko, R. Roldán, A. Fasolino, and M. I. Katsnelson, Phys. Rev. B 82(12), 125435 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125435
37.
37. J. H. Los, M. I. Katsnelson, O. V. Yazyev, K. V. Zakharchenko, and A. Fasolino, Phys. Rev. B 80(12), 121405 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.121405
38.
38. D. Liesegang and C. Oligschleger, J. Mod. Phys. 5, 149 (2014).
http://dx.doi.org/10.4236/jmp.2014.54025
39.
39. S. Plimpton, J. Comput. Phys. 117(1), 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
40.
40. D. Yoon, Y.-W. Son, and H. Cheong, Nano Lett. 11(8), 3227 (2011).
http://dx.doi.org/10.1021/nl201488g
41.
41. Y. Magnin, G. D. Förster, F. Rabilloud, F. Calvo, A. Zappelli, and C. Bichara, J. Phys.: Condens. Matter 26(18), 185401 (2014).
http://dx.doi.org/10.1088/0953-8984/26/18/185401
42.
42. M. Pozzo, D. Alfè, P. Lacovig, P. Hofmann, S. Lizzit, and A. Baraldi, Phys. Rev. Lett. 106(13), 135501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.135501
43.
43. N. Mounet and N. Marzari, Phys. Rev. B 71(20), 205214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205214
44.
44. K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. Lett. 102(4), 046808 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046808
45.
45. A. M. Almudallal, S. V. Buldyrev, and I. Saika-Voivod, J. Chem. Phys. 140(14), 144505 (2014).
http://dx.doi.org/10.1063/1.4870086
46.
46. U. Gasser, J. Phys.: Condens. Matter 21(20), 203101 (2009).
http://dx.doi.org/10.1088/0953-8984/21/20/203101
47.
47. K. V. Zakharchenko, J. H. Los, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 81(23), 235439 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235439
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/14/10.1063/1.4897255
Loading
/content/aip/journal/jcp/141/14/10.1063/1.4897255
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/14/10.1063/1.4897255
2014-10-09
2016-12-08

Abstract

Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys.134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allow large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/14/1.4897255.html;jsessionid=0bYPsskWvnqsD8Un_3yW989T.x-aip-live-06?itemId=/content/aip/journal/jcp/141/14/10.1063/1.4897255&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/14/10.1063/1.4897255&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/14/10.1063/1.4897255'
Right1,Right2,Right3,