Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/14/10.1063/1.4897957
1.
1. R. Loutfy and E. Wexler, Perspectives of Fullerene Nanotechnology edited by E. Ōsawa (Kluwer Academic Publishers, New York, 2002), Part VII, pp. 275280.
2.
2. R. A. DiStasio, O. A. von Lilienfeld, and A. Tkatchenko, Proc. Natl. Acad. Sci. U.S.A. 109, 14791 (2012).
http://dx.doi.org/10.1073/pnas.1208121109
3.
3. C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990).
http://dx.doi.org/10.1021/ja00170a016
4.
4. S. H. Patil and K. T. Tang, J. Chem. Phys. 106, 2298 (1997).
http://dx.doi.org/10.1063/1.473089
5.
5. J. Mitroy and M. W. J. Bromley, Phys. Rev. A 68, 052714 (2003) (Erratum);
http://dx.doi.org/10.1103/PhysRevA.68.052714
5.J. Mitroy and M. W. J. Bromley, Phys. Rev. A 71, 019902 (2005) (Erratum).
http://dx.doi.org/10.1103/PhysRevA.71.019902
6.
6. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 103, 9347 (1995).
http://dx.doi.org/10.1063/1.469994
7.
7. M. van Faassen, L. Jensen, J. A. Berger, and P. L. de Boeij, Chem. Phys. Lett. 395, 274 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.096
8.
8. A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).
http://dx.doi.org/10.1063/1.2795701
9.
9. O. A. Vydrov and T. Van Voorhis, Phys. Rev. A 81, 062708 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062708
10.
10. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
11.
11. A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
12.
12. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
http://dx.doi.org/10.1021/ct200602x
13.
13. V. V. Gobre and A. Tkatchenko, Nat. Commun. 4, 2341 (2013).
http://dx.doi.org/10.1038/ncomms3341
14.
14. A. Ruzsinszky, J. P. Perdew, J. Tao, G. I. Csonka, and J. M. Pitarke, Phys. Rev. Lett. 109, 233203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.233203
15.
15. J. Tao, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U.S.A. 109, 18 (2012).
http://dx.doi.org/10.1073/pnas.1118245108
16.
16. J. Tao, J. P. Perdew, and A. Ruzsinszky, Phys. Rev. B 81, 233102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233102
17.
17. A. A. Lucas, L. Henrard, and Ph. Lambin, Phys. Rev. B 49, 2888 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.2888
18.
18. J. P. Perdew, J. Tao, P. Hao, A. Ruzsinszky, G. I. Csonka, and J. M. Pitarke, J. Phys.: Condens. Matter 24, 424207 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424207
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4897957 for detailed derivation. [Supplementary Material]
20.
20. A. Jiemchooroj, P. Norman, and B. E. Sernelius, J. Chem. Phys. 125, 124306 (2006).
http://dx.doi.org/10.1063/1.2348882
21.
21. J. M. Pacheco and J. P. P. Ramalho, Phys. Rev. Lett. 79, 3873 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3873
22.
22. A. Banerjee, J. Autschbach, and A. Chakrabaru, Phys. Rev. A 78, 032704 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.032704
23.
23. S. Botti, A. Castro, X. Andrade, A. Rubio, and M. A. L. Marques, Phys. Rev. B 78, 035333 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035333
24.
24. L. Serra, F. Garcias, M. Barranco, J. Navarro, L. C. Balbas, A. Rubio, and A. Mananes, J. Phys.: Condens. Matter 1, 10391 (1989).
http://dx.doi.org/10.1088/0953-8984/1/51/012
25.
25. G. B. Adams, M. O'Keeffe, and R. S. Ruoff, J. Phys. Chem. 98, 9465 (1994).
http://dx.doi.org/10.1021/j100089a018
26.
26. R. R. Zope, T. Baruah, M. R. Pederson, and B. I. Dunlap, Phys. Rev. B 77, 115452 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115452
27.
27. G. K. Gueorguiev, J. M. Pacheco, and D. Tománek, Phys. Rev. Lett. 92, 215501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.215501
28.
28. J. Kauczor, P. Norman, and W. A. Saidi, J. Chem. Phys. 138, 114107 (2013).
http://dx.doi.org/10.1063/1.4795158
29.
29. V. A. Parsegian, Van der Waals Forces (Cambridge University Press, Cambridge, 2005).
30.
30. H. C. Hamaker, Physica 4, 1058 (1937).
http://dx.doi.org/10.1016/S0031-8914(37)80203-7
31.
31. J. F. Dobson and T. Gould, J. Phys.: Condens. Matter 24, 073201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/7/073201
32.
32. S. Grimme, Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
33.
33.There is a small additional contribution for C8 and C10 given by and , respectively. Here and rij is the distance of atom pairs.
34.
34. J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96, 073201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.073201
35.
35. R.-F. Liu, J. G. Ángyán, and J. F. Dobson, J. Chem. Phys. 134, 114106 (2011).
http://dx.doi.org/10.1063/1.3563596
36.
36. J. F. Dobson, Int. J. Quantum Chem. 114, 1157 (2014).
http://dx.doi.org/10.1002/qua.24635
37.
37. A. J. Misquitta, J. Spencer, A. J. Stone, and A. Alavi, Phys. Rev. B 82, 075312 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075312
38.
38. L. Ma, K. A. Jackson, J. Wang, M. Horoi, and J. Jellinek, Phys. Rev. B 89, 035429 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035429
39.
39. A. Derevianko, S. G. Porsev, and J. F. Babb, At. Data. Nucl. Data Tables 96, 323 (2010).
http://dx.doi.org/10.1016/j.adt.2009.12.002
40.
40. R. Peverati and D. G. Truhlar, Philos. Trans. R. Soc. A 372, 20120476 (2014).
http://dx.doi.org/10.1098/rsta.2012.0476
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/14/10.1063/1.4897957
Loading
/content/aip/journal/jcp/141/14/10.1063/1.4897957
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/14/10.1063/1.4897957
2014-10-10
2016-09-26

Abstract

Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (one- and two-electron densities). We find that the model can generate accurate vdW coefficients for both spherical and non-spherical clusters, with an overall mean absolute relative error of 4%, without any fitting. Based on this model, we study the non-additivity of vdW interactions. We find that there is strong non-additivity of vdW interactions between nanostructures, arising from electron delocalization, inequivalent contributions of atoms, and non-additive many-body interactions. Furthermore, we find that the non-additivity can have increasing size dependence as well as decreasing size dependence with cluster size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/14/1.4897957.html;jsessionid=5wmuGKa4ARUi9x4Yu7DcQAQg.x-aip-live-03?itemId=/content/aip/journal/jcp/141/14/10.1063/1.4897957&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/14/10.1063/1.4897957&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/14/10.1063/1.4897957'
Right1,Right2,Right3,