Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/14/10.1063/1.4897973
1.
1. P. W. Anderson, Science 267, 1615 (1995).
http://dx.doi.org/10.1126/science.267.5204.1615-e
2.
2. C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2338
3.
3. F. W. Starr, J. F. Douglas, and S. Sastry, J. Chem. Phys. 138, 12A541 (2013).
http://dx.doi.org/10.1063/1.4790138
4.
4. B. A. P. Betancourt, J. F. Douglas, and F. W. Starr, J. Chem. Phys. 140, 204509 (2014).
http://dx.doi.org/10.1063/1.4878502
5.
5. J. F. Douglas, J. Dudowicz, and K. F. Freed, J. Chem. Phys. 125, 144907 (2006).
http://dx.doi.org/10.1063/1.2356863
6.
6. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 119, 1264512666 (2003).
http://dx.doi.org/10.1063/1.1625642
7.
7. J. Dudowicz, K. F. Freed, and J. F. Douglas, Adv. Chem. Phys. 137, 125 (2008).
http://dx.doi.org/10.1002/9780470238080.ch3
8.
8. K. F. Freed, Acc. Chem. Res. 44, 194 (2011).
http://dx.doi.org/10.1021/ar100122w
9.
9. K. F. Freed, J. Chem. Phys. 119, 57305739 (2003).
http://dx.doi.org/10.1063/1.1600716
10.
10. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 123, 111102 (2005).
http://dx.doi.org/10.1063/1.2035087
11.
11. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 109, 21350 (2005).
http://dx.doi.org/10.1021/jp053693k
12.
12. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 109, 21285 (2005).
http://dx.doi.org/10.1021/jp0523266
13.
13. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 124, 064901 (2006).
http://dx.doi.org/10.1063/1.2166391
14.
14. E. B. Stukalin, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 131, 114905 (2009).
http://dx.doi.org/10.1063/1.3216109
15.
15. E. B. Stukalin, J. F. Douglas, and K. F. Freed, J. Chem. Phys. 132, 084504 (2010).
http://dx.doi.org/10.1063/1.3304738
16.
16. K. F. Freed and J. Dudowicz, Adv. Polym. Sci. 183, 63 (2005).
http://dx.doi.org/10.1007/b135883
17.
17. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
18.
18. K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, Macromolecules 41, 7232 (2008).
http://dx.doi.org/10.1021/ma801155c
19.
19. L.-M. Martinez and C. A. Angell, Nature (London) 410, 663 (2001).
http://dx.doi.org/10.1038/35070517
20.
20. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 140, 244905 (2014).
http://dx.doi.org/10.1063/1.4884123
21.
21. R. Richert and C. A. Angell, J. Chem. Phys. 108, 9016 (1998).
http://dx.doi.org/10.1063/1.476348
22.
22. F. W. Starr and J. F. Douglas, Phys. Rev. Lett. 106, 115702 (2011)
http://dx.doi.org/10.1103/PhysRevLett.106.115702
23.
23. D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).
http://dx.doi.org/10.1021/jp953748q
24.
24. K. F. Freed, J. Chem. Phys. 136, 244904 (2012).
http://dx.doi.org/10.1063/1.4730161
25.
25. K. F. Freed, J. Chem. Phys. 137, 204906 (2012).
http://dx.doi.org/10.1063/1.4767532
26.
26. R. P. Feynman, Phys. Rev. 94, 262 (1954).
http://dx.doi.org/10.1103/PhysRev.94.262
27.
27. A. Shavit, J. F. Douglas, and R. A. Riggleman, J. Chem. Phys. 138, 12A528 (2013).
http://dx.doi.org/10.1063/1.4775781
28.
28. H. Zhang and J. F. Douglas, Soft Matter 9, 1254 (2013).
http://dx.doi.org/10.1039/c2sm26789f
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/14/10.1063/1.4897973
Loading
/content/aip/journal/jcp/141/14/10.1063/1.4897973
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/14/10.1063/1.4897973
2014-10-10
2016-09-28

Abstract

A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, “The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition” [Science267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys.43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/14/1.4897973.html;jsessionid=_cxLIPRv_dCNknMuWfnHyU2f.x-aip-live-02?itemId=/content/aip/journal/jcp/141/14/10.1063/1.4897973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/14/10.1063/1.4897973&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/14/10.1063/1.4897973'
Right1,Right2,Right3,