Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/16/10.1063/1.4898803
1.
1. D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, 2nd ed., edited by J. Grotendorst (John von Neumann Institute for Computing, Jülich, Germany, 2000).
2.
2. B. Kirchner, J. di Dio Philipp, and J. Hutter, Top. Curr. Chem. 307, 109 (2012).
http://dx.doi.org/10.1007/128_2011_195
3.
3. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
4.
4. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
5.
5. R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
6.
6. R. Dreizler and K. Gross, Density-functional Theory (Springer Verlag, Berlin, 1990).
7.
7. D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).
http://dx.doi.org/10.1080/00268979000101451
8.
8. P. Pulay and G. Fogarasi, Chem. Phys. Lett. 386, 272 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.069
9.
9. J. Herbert and M. Head-Gordon, Phys. Chem. Chem. Phys. 7, 3269 (2005).
http://dx.doi.org/10.1039/b509494a
10.
10. A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Phys. Rev. Lett. 97, 123001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.123001
11.
11. T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.066401
12.
12. A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.123004
13.
13. P. Steneteg, I. A. Abrikosov, V. Weber, and A. M. N. Niklasson, Phys. Rev. B 82, 075110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075110
14.
14. G. Zheng, A. M. N. Niklasson, and M. Karplus, J. Chem. Phys. 135, 044122 (2011).
http://dx.doi.org/10.1063/1.3605303
15.
15. J. Hutter, WIREs Comput. Mol. Sci. 2, 604 (2012).
http://dx.doi.org/10.1002/wcms.90
16.
16. L. Lin, J. Lu, and S. Shao, Entropy 16, 110 (2014).
http://dx.doi.org/10.3390/e16010110
17.
17. P. Souvatzis and A. Niklasson, J. Chem. Phys. 140, 044117 (2014).
http://dx.doi.org/10.1063/1.4862907
18.
18. M. J. Cawkwell and A. M. N. Niklasson, J. Chem. Phys. 137, 134105 (2012).
http://dx.doi.org/10.1063/1.4755991
19.
19. M. Arita, D. R. Bowler, and T. Miyazaki, e-print arXiv:1409.6085v1 [cond-mat.mtrl-sci].
20.
20. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1085
21.
21. A. M. N. Niklasson, Phys. Rev. B 66, 155115 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155115
22.
22. D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012).
http://dx.doi.org/10.1088/0034-4885/75/3/036503
23.
23. A. M. N. Niklasson and M. J. Cawkwell, Phys. Rev. B 86, 174308 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.174308
24.
24. P. Souvatzis and A. Niklasson, J. Chem. Phys. 139, 214102 (2013).
http://dx.doi.org/10.1063/1.4834015
25.
25. P. Bendt and A. Zunger, Phys. Rev. Lett. 50, 1684 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1684
26.
26. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
27.
27. J. Nocedal and S. J. Wright, Numerical Optimization, 1st ed. (Springer-Verlag, New York, 1990).
28.
28. P. H. Dederichs and R. Zeller, Phys. Rev. B 28, 5462 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.5462
29.
29. C. G. Broyden, Math. Comput. 19, 577 (1965).
http://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
30.
30. G. P. Srivastava, J. Phys. A 17, L317 (1984).
http://dx.doi.org/10.1088/0305-4470/17/6/002
31.
31. D. D. Johnson, Phys. Rev. B 38, 12807 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.12807
32.
32. G. P. Kerker, Phys. Rev. B 23, 3082 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.3082
33.
33. A. M. N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C. J. Tymczak, E. Holmstrom, G. Zheng, and V. Weber, J. Chem. Phys. 130, 214109 (2009).
http://dx.doi.org/10.1063/1.3148075
34.
34. A. Odell, A. Delin, B. Johansson, N. Bock, M. Challacombe, and A. M. N. Niklasson, J. Chem. Phys. 131, 244106 (2009).
http://dx.doi.org/10.1063/1.3268338
35.
35. M. Elstner, D. Poresag, G. Jungnickel, J. Elstner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
36.
36. M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgarde, Phys. Rev. Lett. 81, 5149 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5149
37.
37. T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Poresag, S. Suhai, and R. Scholz, Phys. Stat. Sol. 217, 41 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
38.
38. B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).
http://dx.doi.org/10.1021/jp070186p
39.
39. A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.193001
40.
40. P. M. Anglade and X. Gonze, Phys. Rev. B 78, 045126 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045126
41.
41. L. Lin and S. Yang, SIAM J. Sci. Comput. 35, S277 (2013).
http://dx.doi.org/10.1137/120880604
42.
42. J. M. Dickey and A. Paskin, Phys. Rev. 188, 1407 (1969).
http://dx.doi.org/10.1103/PhysRev.188.1407
43.
43. M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, J. Phys. Chem. 100, 12878 (1996).
http://dx.doi.org/10.1021/jp960480+
44.
44. J. P. Channell and C. Scovel, Nonlinearity 3, 231 (1990).
http://dx.doi.org/10.1088/0951-7715/3/2/001
45.
45. R. McLachlan and P. Atela, Nonlinearity 5, 541 (1992).
http://dx.doi.org/10.1088/0951-7715/5/2/011
46.
46. B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004).
47.
47. R. D. Engle, R. D. Skeel, and M. Drees, J. Comput. Phys. 206, 432 (2005).
http://dx.doi.org/10.1016/j.jcp.2004.12.009
48.
48. J. Harris, Phys. Rev. B 31, 1770 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.1770
49.
49. W. M. C. Foulkes and R. Haydock, Phys. Rev. B 39, 12520 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12520
50.
50. C. J. Tymczak, private communication (2014).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/16/10.1063/1.4898803
Loading
/content/aip/journal/jcp/141/16/10.1063/1.4898803
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/16/10.1063/1.4898803
2014-10-29
2016-12-07

Abstract

Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/16/1.4898803.html;jsessionid=ZDsHMhC2SlUncezTqh_fWe8M.x-aip-live-02?itemId=/content/aip/journal/jcp/141/16/10.1063/1.4898803&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/16/10.1063/1.4898803&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/16/10.1063/1.4898803'
Right1,Right2,Right3,