Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/16/10.1063/1.4900734
1.
1. T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys. 82, 2196 (1985).
http://dx.doi.org/10.1063/1.448362
2.
2. R. R. Friedl and S. P. Sander, J. Phys. Chem. 91, 2721 (1987).
http://dx.doi.org/10.1021/j100295a015
3.
3. E. Hirota, K. Kawaguchi, T. Ishiwata, and I. Tanaka, J. Chem. Phys. 95, 771 (1991).
http://dx.doi.org/10.1063/1.461083
4.
4. T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Mol. Spec. 153, 167 (1992).
http://dx.doi.org/10.1016/0022-2852(92)90466-2
5.
5. M. E. Jacox and W. E. Thompson, J. Chem. Phys. 129, 204306 (2008).
http://dx.doi.org/10.1063/1.3020753
6.
6. H. Beckers, H. Willner, and M. E. Jacox, ChemPhysChem. 10, 706 (2009).
http://dx.doi.org/10.1002/cphc.200800860
7.
7. K. Kawaguchi, N. Shimizu, R. Fujimori, J. Tang, T. Ishiwata, and I. Tanaka, J. Mol. Spec. 268, 85 (2011).
http://dx.doi.org/10.1016/j.jms.2011.04.003
8.
8. R. Fujimori, N. Shimizu, J. Tang, T. Ishiwata, and K. Kawaguchi, J. Mol. Spec. 283, 10 (2013).
http://dx.doi.org/10.1016/j.jms.2012.11.005
9.
9. K. Kawaguchi, R. Fujimori, J. Tang, and T. Ishiwata, J. Phys. Chem. A 117, 13732 (2013).
http://dx.doi.org/10.1021/jp407822g
10.
10. H. H. Nelson, L. Pasternack, and J. R. McDonald, J. Phys. Chem. 87, 1286 (1983).
http://dx.doi.org/10.1021/j100231a003
11.
11. T. Ishiwata, I. Fujiwara, Y. Naruge, K. Obi, and I. Tanaka, J. Phys. Chem. 87, 1349 (1983).
http://dx.doi.org/10.1021/j100231a016
12.
12. B. Kim, P. L. Hunter, and H. S. Johnston, J. Chem. Phys. 96, 4057 (1992).
http://dx.doi.org/10.1063/1.461861
13.
13. K. Kawaguchi, T. Ishiwata, E. Hirota, and I. Tanaka, Chem. Phys. Lett. 180, 436 (1991).
http://dx.doi.org/10.1016/0009-2614(91)85145-M
14.
14. K. Kawaguchi, T. Ishiwata, E. Hirota, and I. Tanaka, Chem. Phys. 231, 193 (1998).
http://dx.doi.org/10.1016/S0301-0104(97)00386-8
15.
15. W. Eisfeld and K. Morokuma, J. Chem. Phys. 114, 9430 (2001).
http://dx.doi.org/10.1063/1.1370065
16.
16. J. F. Stanton, J. Chem. Phys. 126, 134309 (2007).
http://dx.doi.org/10.1063/1.2715547
17.
17. J. F. Stanton and M. Okumura, Phys. Chem. Chem. Phys. 11, 4742 (2009).
http://dx.doi.org/10.1039/b902252j
18.
18. J. F. Stanton, Mol. Phys. 107, 1059 (2009).
http://dx.doi.org/10.1080/00268970902740530
19.
19. C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012).
http://dx.doi.org/10.1021/jz300721b
20.
20. E. D. Glendening and A. M. Halpern, J. Chem. Phys. 127, 164307 (2007).
http://dx.doi.org/10.1063/1.2777145
21.
21. M. Okumura, J. F. Stanton, A. Deev, and J. Sommar, J. Phys. Scr. 73, C64 (2006).
http://dx.doi.org/10.1088/0031-8949/73/1/N12
22.
22. H. Köuppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).
http://dx.doi.org/10.1002/9780470142813.ch2
23.
23. H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory. Comput. 8, 2600 (2012).
http://dx.doi.org/10.1021/ct3004035
24.
24. B. Fu, J. M. Bowman, H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput. 9, 893 (2013).
http://dx.doi.org/10.1021/ct3009792
25.
25. B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009).
http://dx.doi.org/10.1080/01442350903234923
26.
26. J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).
http://dx.doi.org/10.1080/0144235031000124163
27.
27. S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phys. 107, 10458 (1997).
http://dx.doi.org/10.1063/1.474210
28.
28. S. Carter, J. M. Bowman, and N. Handy, Theor. Chem. Acta. 100, 191 (1998).
http://dx.doi.org/10.1007/s002140050379
29.
29. S. Carter, J. M. Bowman, and N. C. Handy, Mol. Phys. 110, 775 (2012).
http://dx.doi.org/10.1080/00268976.2012.669504
30.
30. J. K. G. Watson, Mol. Phys. 15, 479 (1968).
http://dx.doi.org/10.1080/00268976800101381
31.
31. J. M. Bowman and B. Gazdy, J. Chem. Phys. 94, 816817 (1991).
http://dx.doi.org/10.1063/1.460305
32.
32.Generalized coordinate-scaling approach for optimization of potentials, J. M. Bowman and J. Qi, in Fashioning a Model: Optimization Methods in Chemical Physics, edited by A. Ernesti, J. M. Hutson, and N. J. Wright (CCP6, Daresbury, 1998), Chap. 5.
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4900734 for details of the MULTIMODE results. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/16/10.1063/1.4900734
Loading
/content/aip/journal/jcp/141/16/10.1063/1.4900734
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/16/10.1063/1.4900734
2014-10-31
2016-09-28

Abstract

A semi-global, permutationally invariant potential energy surface for NO is constructed from a subset of roughly 5000 Multi-State CASPT2 calculations (MS-CAS(17e,13o)PT2/aug-cc-pVTZ) reported by Morokuma and co-workers [H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput.8, 2600 (2012)]. The PES, with empirical adjustments to modify the energies of two fundamentals and a hot-band transition, is used in full-dimensional vibrational self-consistent field/virtual state configuration interaction calculations using the code MULTIMODE. Vibrational energies and assignments are given for the fundamentals and low-lying combination states, including two that have been the focus of some controversy. Energies of a number of overtone and combinations are shown to be in good agreement with experiment and previous calculations using a model vibronic Hamiltonian [C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett.3, 1946 (2012)]. Notably, the fundamental is calculated to be at 1099 cm−1 in accord with the prediction from the vibronic analysis, although roughly 30 cm−1 higher. The state at 1493 cm−1 is assigned as + , which is also in agreement with the vibronic analysis and some experiments. Vibrational energies for 15NO are also presented and these are also in good agreement with experiment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/16/1.4900734.html;jsessionid=tYAh7quraTa4SasgKZl5THsO.x-aip-live-06?itemId=/content/aip/journal/jcp/141/16/10.1063/1.4900734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/16/10.1063/1.4900734&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/16/10.1063/1.4900734'
Right1,Right2,Right3,