Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/16/10.1063/1.4900772
1.
1. C. G. Salzmann, P. G. Radaelli, B. Slater, and J. L. Finney, Phys. Chem. Chem. Phys. 13, 18468 (2011).
http://dx.doi.org/10.1039/c1cp21712g
2.
2. C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, Science 311, 1758 (2006).
http://dx.doi.org/10.1126/science.1123896
3.
3. C. Salzmann, P. Radaelli, E. Mayer, and J. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
4.
4. S. Singer, J.-L. Kuo, T. Hirsch, C. Knight, L. Ojamäe, and M. Klein, Phys. Rev. Lett. 94, 135701 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.135701
5.
5. C. Knight and S. J. Singer, J. Phys. Chem. B 109, 21040 (2005).
http://dx.doi.org/10.1021/jp0540609
6.
6. J.-L. Kuo, Phys. Chem. Chem. Phys. 5, 3733 (2005).
http://dx.doi.org/10.1039/b508736h
7.
7. J.-L. Kuo and W. F. Kuhs, J. Phys. Chem. B 110, 3697 (2006).
http://dx.doi.org/10.1021/jp055260n
8.
8. S. Singer and C. Knight, J. Chem. Phys. 129, 164513 (2008).
http://dx.doi.org/10.1063/1.2991297
9.
9. C. J. Fennell and J. D. Gezelter, J. Chem. Theory Comput. 1, 662 (2005).
http://dx.doi.org/10.1021/ct050005s
10.
10. I. M. Svishchev and P. G. Kusalik, Phys. Rev. B 53, R8815 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R8815
11.
11. J. Russo, F. Romano, and H. Tanaka, Nat. Mater. 13, 670 (2014).
http://dx.doi.org/10.1038/nmat3977
12.
12. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
13.
13. J. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
14.
14. Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.-T. Wang, Y. Ma, and Y. Tian, J. Am. Chem. Soc. 134, 12362 (2012).
http://dx.doi.org/10.1021/ja304380p
15.
15.GrEnum,” see https://chemistry.osu.edu/~singer/GrEnum.html for a description of this software and the algorithms therein.
16.
16. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristall. 220, 567 (2005).
http://dx.doi.org/10.1524/zkri.220.5.567.65075
17.
17. M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
18.
18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
19.
19. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
20.
20. J. Barzilai and J. M. Borwein, IMA J. Numer. Anal. 8, 141 (1988).
http://dx.doi.org/10.1093/imanum/8.1.141
21.
21. A. J. Leadbetter, R. C. Ward, J. W. Clark, P. A. Tucker, T. Matsuo, and H. Suga, J. Chem. Phys. 82, 424 (1985).
http://dx.doi.org/10.1063/1.448763
22.
22. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Comp. Phys. Commun. 167, 103 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.12.014
23.
23. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
24.
24. Z. Raza, D. Alfè, C. G. Salzmann, J. Klimes, A. Michaelides, and B. Slater, Phys. Chem. Chem. Phys. 13, 19788 (2011).
http://dx.doi.org/10.1039/c1cp22506e
25.
25. G. A. Tribello, B. Slater, and C. G. Salzmann, J. Am. Chem. Soc. 128, 12594 (2006).
http://dx.doi.org/10.1021/ja0630902
26.
26. F. Labat, C. Pouchan, C. Adamo, and G. E. Scuseria, J. Comp. Chem. 32, 2177 (2011).
http://dx.doi.org/10.1002/jcc.21801
27.
27. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
28.
28. B. Slater and D. Quigley, Nat. Mater. 13, 733 (2014).
http://dx.doi.org/10.1038/nmat4017
29.
29. G. A. Tribello, B. Slater, M. A. Zwijnenburg, and R. G. Bell, Phys. Chem. Chem. Phys. 12, 8597 (2010).
http://dx.doi.org/10.1039/b916367k
30.
30. R. Radhakrishnan and B. Trout, J. Am. Chem. Soc. 125, 7743 (2003).
http://dx.doi.org/10.1021/ja0211252
31.
31. D. Quigley and P. M. Rodger, J. Chem. Phys. 128, 154518 (2008).
http://dx.doi.org/10.1063/1.2888999
32.
32. A. V. Brukhno, J. Anwar, R. Davidchack, and R. Handel, J. Phys.: Condens. Matter 20, 494243 (2008).
http://dx.doi.org/10.1088/0953-8984/20/49/494243
33.
33. T. Li, D. Donadio, G. Russo, and G. Galli, Phys. Chem. Chem. Phys. 13, 19807 (2011).
http://dx.doi.org/10.1039/c1cp22167a
34.
34. A. Reinhardt and J. P. K. Doye, J. Chem. Phys. 136, 054501 (2012).
http://dx.doi.org/10.1063/1.3677192
35.
35. A. Reinhardt and J. P. K. Doye, J. Chem. Phys. 139, 096102 (2013).
http://dx.doi.org/10.1063/1.4819898
36.
36. M. M. Conde, C. Vega, G. A. Tribello, and B. Slater, J. Chem. Phys. 131, 034510 (2009).
http://dx.doi.org/10.1063/1.3182727
37.
37. E. R. Davidson and K. Morokuma, J. Chem. Phys. 81, 3741 (1984).
http://dx.doi.org/10.1063/1.448101
38.
38. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
39.
39. S. J. Cox, M. D. Towler, D. Alfè, and A. Michaelides, J. Chem. Phys. 140, 174703 (2014).
http://dx.doi.org/10.1063/1.4871873
40.
40. K. Refson, P. R. Tulip, and S. J. Clark, Phys. Rev. B 73, 155114 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155114
41.
41. J. W. Bennett and A. M. Rappe, see http://www.sas.upenn.edu/rappegroup/research/pseudo-potential-gga.html for pseudopotential files and generation information.
42.
42. J. Liu, C. E. Nicholson, and S. J. Cooper, Langmuir 23, 7286 (2007).
http://dx.doi.org/10.1021/la063650a
43.
43. E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).
http://dx.doi.org/10.1021/ja4028814
44.
44. R. Handel, R. L. Davidchack, J. Anwar, and A. Brukhno, Phys. Rev. Lett. 100, 036104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.036104
45.
45. J. Benet, L. G. MacDowell, and E. Sanz, Phys. Chem. Chem. Phys. 16, 22159 (2014).
http://dx.doi.org/10.1039/C4CP03398A
46.
46. R. Martok, D. Donadio, and M. Parrinello, J. Chem. Phys. 122, 134501 (2005).
http://dx.doi.org/10.1063/1.1870852
47.
47. R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ros, J. Phys.: Condens. Matter 22, 023201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/023201
48.
48. J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 174109 (2005).
http://dx.doi.org/10.1063/1.1888569
49.
49.See www.quantum-espresso.org for source code, pseudopotential files and documentation.
50.
50. D. Alfè and M. Gillan, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 161101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161101
51.
51. L. Mitáš, E. L. Shirley, and D. M. Ceperley, J. Chem. Phys. 95, 34673475 (1991).
http://dx.doi.org/10.1063/1.460849
52.
52. L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, Phys. Rev. B: Condens. Matter 53, 18141832 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1814
53.
53. B. Santra, J. Klimes, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 1-5 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
54.
54.See supplementary material at http://dx.doi.org/10.1063/1.4900772 for complete coordinate listing of the ground state proton configurations in ice 0 and ice i, and a visualisation of the latter. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/16/10.1063/1.4900772
Loading
/content/aip/journal/jcp/141/16/10.1063/1.4900772
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/16/10.1063/1.4900772
2014-10-31
2016-12-05

Abstract

Using methods, we examine the stability of ice 0, a recently proposed tetragonal form of ice implicated in the homogeneous freezing of water [J. Russo, F. Romano, and H. Tanaka, Nat. Mater.13, 670 (2014)]. Vibrational frequencies are computed across the complete Brillouin Zone using Density Functional Theory (DFT), to confirm mechanical stability and quantify the free energy of ice 0 relative to ice I. The robustness of this result is tested via dispersion corrected semi-local and hybrid DFT, and Quantum Monte-Carlo calculation of lattice energies. Results indicate that popular molecular models only slightly overestimate the stability of ice zero. In addition, we study all possible realisations of proton disorder within the ice zero unit cell, and identify the ground state as ferroelectric. Comparisons are made to other low density metastable forms of ice, suggesting that the ice i structure[C. J. Fennel and J. D. Gezelter, J. Chem. Theory Comput.1, 662 (2005)] may be equally relevant to ice formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/16/1.4900772.html;jsessionid=QY3G1k0FuQSbANdY0hyqsImu.x-aip-live-03?itemId=/content/aip/journal/jcp/141/16/10.1063/1.4900772&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/16/10.1063/1.4900772&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/16/10.1063/1.4900772'
Right1,Right2,Right3,