Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/17/10.1063/1.4901110
1.
1. R. Roth, Y. Harano, and M. Kinoshita, Phys. Rev. Lett. 97, 078101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.078101
2.
2. H. Hansen-Goos, R. Roth, K. Mecke, and S. Dietrich, Phys. Rev. Lett. 99, 128101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.128101
3.
3. R. Roth, D. Gillespie, W. Nonner, and R. E. Eisenberg, Biophys. J. 94, 4282 (2008).
http://dx.doi.org/10.1529/biophysj.107.120493
4.
4. M. Oettel, H. Hansen-Goos, P. Bryk, and R. Roth, Europhys. Lett. 85, 36003 (2009).
http://dx.doi.org/10.1209/0295-5075/85/36003
5.
5. K. Mecke and C. H. Arns, J. Phys.: Condens. Matter 17, S503 (2005).
http://dx.doi.org/10.1088/0953-8984/17/9/014
6.
6. P. M. König, R. Roth, and K. R. Mecke, Phys. Rev. Lett. 93, 160601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.160601
7.
7. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957).
8.
8. M. L. Connolly, J. Am. Chem. Soc. 107, 1118 (1985).
http://dx.doi.org/10.1021/ja00291a006
9.
9. R. Evans, Adv. Phys. 28, 143 (1979).
http://dx.doi.org/10.1080/00018737900101365
10.
10. E. M. Blokhuis, Phys. Rev. E 87, 022401 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.022401
11.
11. I. Urrutia, Phys. Rev. E 89, 032122 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.032122
12.
12. B. B. Laird, A. Hunter, and R. L. Davidchack, Phys. Rev. E 86, 060602(R) (2012).
http://dx.doi.org/10.1103/PhysRevE.86.060602
13.
13. S. Labík and J. Kolafa, Phys. Rev. E 80, 051122 (2009);
http://dx.doi.org/10.1103/PhysRevE.80.051122
13.S. Labík and J. Kolafa, Phys. Rev. E 84, 069901(E) (2011).
http://dx.doi.org/10.1103/PhysRevE.84.069901
14.
14. I. Urrutia, Phys. Rev. E 84, 062101 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.062101
15.
15. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.980
16.
16. A. Santos, Phys. Rev. E 86, 040102(R) (2012).
http://dx.doi.org/10.1103/PhysRevE.86.040102
17.
17. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
http://dx.doi.org/10.1063/1.1672048
18.
18.These expressions for and give the leading behavior for Ri → ∞, which is the relevant limit in the present work. The full expressions for and have to be constructed such that the weight of ρi vanishes as Ri → 0.
19.
19. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic Press, London, 2006).
20.
20. A. Bellemans, Physica 28, 493 (1962).
http://dx.doi.org/10.1016/0031-8914(62)90037-X
21.
21.Henceforth, we use the tilde to refer to thermodynamic coefficients calculated relative to the physical wall rather than the parallel wall which defines the external potential on the solvent, see Ref. 4 for details.
22.
22. R. Roth, R. Evans, A. Lang, and G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002).
http://dx.doi.org/10.1088/0953-8984/14/46/313
23.
23. H. Hansen-Goos and R. Roth, J. Phys.: Condens. Matter 18, 8413 (2006).
http://dx.doi.org/10.1088/0953-8984/18/37/002
24.
24. D. Henderson and M. Plischke, Proc. R. Soc. London, Ser. A 400, 163 (1985).
http://dx.doi.org/10.1098/rspa.1985.0074
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/17/10.1063/1.4901110
Loading
/content/aip/journal/jcp/141/17/10.1063/1.4901110
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/17/10.1063/1.4901110
2014-11-05
2016-09-27

Abstract

We demonstrate that the Hadwiger form of the free energy of a fluid in contact with a wall is insufficient to describe the low-density behavior of a hard-sphere fluid. This implies that morphological thermodynamics of the hard-sphere fluid is an approximate theory if only four geometric measures are included. In order to quantify deviations from the Hadwiger form we extend standard fundamental measure theory of the bulk fluid by introducing additional scaled-particle variables which allow for the description of non-Hadwiger coefficients. The theory is in excellent agreement with recent computer simulations. The fact that the leading non-Hadwiger coefficient is one order of magnitude smaller than the smallest Hadwiger coefficient lends confidence to the numerous results that have been previously obtained within standard morphological thermodynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/17/1.4901110.html;jsessionid=ltAWMkRf0NMDFkG5Q8v3WafH.x-aip-live-03?itemId=/content/aip/journal/jcp/141/17/10.1063/1.4901110&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/17/10.1063/1.4901110&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/17/10.1063/1.4901110'
Right1,Right2,Right3,