Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/17/10.1063/1.4901328
1.
1. T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 6736 (2010).
http://dx.doi.org/10.1021/cr900271s
2.
2. M. J. Bedard-Hearn, F. Sterpone, and P. J. Rossky, J. Phys. Chem. A 114, 7661 (2010).
http://dx.doi.org/10.1021/jp103446z
3.
3. R. S. H. Liu, Acc. Chem. Res. 34, 555 (2001).
http://dx.doi.org/10.1021/ar000165c
4.
4. B. G. Levine and T. J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007).
http://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
5.
5. T. Mori, W. J. Glover, M. S. Schuurman, and T. J. Martinez, J. Phys. Chem. A 116, 2808 (2012).
http://dx.doi.org/10.1021/jp2097185
6.
6. T. S. Kuhlman, W. J. Glover, T. Mori, K. B. Moller, and T. J. Martinez, Faraday Discuss. 157, 193 (2012).
http://dx.doi.org/10.1039/c2fd20055d
7.
7. W. Fuß, J. Photochem. Photobiol. A 237, 53 (2012).
http://dx.doi.org/10.1016/j.jphotochem.2012.01.019
8.
8. A. Warshel, Nature (London) 260, 679 (1976).
http://dx.doi.org/10.1038/260679a0
9.
9. M. Ben-Nun, F. Molnar, H. Lu, J. C. Phillips, T. J. Martínez, and K. Schulten, Faraday Discuss. 110, 447 (1998).
http://dx.doi.org/10.1039/a801310a
10.
10. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Science 310, 1006 (2005).
http://dx.doi.org/10.1126/science.1118379
11.
11. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, Oxford, 2002).
12.
12. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
13.
13. E. E. Ostroumov, R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes, Science 340, 52 (2013).
http://dx.doi.org/10.1126/science.1230106
14.
14. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
http://dx.doi.org/10.1021/j100180a030
15.
15. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
16.
16. M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), p. 155.
17.
17. B. G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
18.
18. H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5794 (1981).
http://dx.doi.org/10.1063/1.440892
19.
19. J. Stålring, A. Bernhardsson, and R. Lindh, Mol. Phys. 99, 103 (2001).
http://dx.doi.org/10.1080/002689700110005642
20.
20. B. H. Lengsfield, P. Saxe, and D. R. Yarkony, J. Chem. Phys. 81, 4549 (1984).
http://dx.doi.org/10.1063/1.447428
21.
21. C. Evenhuis and T. J. Martínez, J. Chem. Phys. 135, 224110 (2011).
http://dx.doi.org/10.1063/1.3660686
22.
22. X. Zhu and D. R. Yarkony, J. Chem. Phys. 140, 024112 (2014).
http://dx.doi.org/10.1063/1.4857335
23.
23. Y. Shu and B. G. Levine, J. Chem. Phys. 139, 074102 (2013).
http://dx.doi.org/10.1063/1.4817965
24.
24. A. Zaitsevskii and J.-P. Malrieu, Chem. Phys. Lett. 228, 458 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00899-X
25.
25. C. W. Bauschlicher and S. R. Langhoff, J. Chem. Phys. 89, 4246 (1988).
http://dx.doi.org/10.1063/1.455702
26.
26. A. Sanchez de Meras, M.-B. Lepetit, and J.-P. Malrieu, Chem. Phys. Lett. 172, 163 (1990).
http://dx.doi.org/10.1016/0009-2614(90)87291-X
27.
27. M. P. Deskevich, D. J. Nesbitt, and H.-J. Werner, J. Chem. Phys. 120, 7281 (2004).
http://dx.doi.org/10.1063/1.1667468
28.
28. H. Shi and A. L. L. East, J. Chem. Phys. 125, 104311 (2006).
http://dx.doi.org/10.1063/1.2336214
29.
29.It should be noted that these issues are not necessarily independent: orbital rotations and symmetry breakings may occur due to an unweighted state crossing.
30.
30. R. Dawes, A. W. Jasper, C. Tao, C. Richmond, C. Mukarakate, S. H. Kable, and S. A. Reid, J. Phys. Chem. Lett. 1, 641 (2010).
http://dx.doi.org/10.1021/jz900380a
31.
31.Although the energy expression depends also on N, the total number of states included in the DW averaging, it is recommended this number be increased to convergence whereupon any higher state is introduced with zero weight for all geometries of interest.
32.
32. B. G. Levine, J. D. Coe, A. M. Virshup, and T. J. Martínez, Chem. Phys. 347, 3 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.01.014
33.
33. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
34.
34. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. 2, 242 (2012).
http://dx.doi.org/10.1002/wcms.82
35.
35. A. Virshup, B. Levine, and T. Martínez, Theor. Chem. Acc. 133, 1506 (2014).
http://dx.doi.org/10.1007/s00214-014-1506-5
36.
36.If the adaptive timesteps reached 1 au and the total classical energy was still not conserved to the desired tolerance (as seen in SA-4-CASSCF dynamics), the adaptive timestepping was aborted and propagation was resumed with the original 10-au timestep.
37.
37. B. G. Levine and T. J. Martínez, J. Phys. Chem. A 113, 12815 (2009).
http://dx.doi.org/10.1021/jp907111u
38.
38. M. A. Watson and G. K.-L. Chan, J. Chem. Theory Comput. 8, 4013 (2012).
http://dx.doi.org/10.1021/ct300591z
39.
39. N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984).
http://dx.doi.org/10.1063/1.447489
40.
40. X. Zhu and D. R. Yarkony, J. Chem. Phys. 132, 104101 (2010).
http://dx.doi.org/10.1063/1.3324982
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/17/10.1063/1.4901328
Loading
/content/aip/journal/jcp/141/17/10.1063/1.4901328
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/17/10.1063/1.4901328
2014-11-06
2016-12-10

Abstract

State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weighted schemes) are derived for the first time, enabling energy-conserving excited-state molecular dynamics in instances where SA-CASSCF fails.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/17/1.4901328.html;jsessionid=jCZGD0qL-MqRUSep4K-Gv-Vp.x-aip-live-03?itemId=/content/aip/journal/jcp/141/17/10.1063/1.4901328&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/17/10.1063/1.4901328&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/17/10.1063/1.4901328'
Right1,Right2,Right3,