Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Douhal, F. Lahmani, and A. H. Zewail, Chem. Phys. 207, 477 (1996).
2. S. Hammes-Schiffer, J. Phys. Chem. Lett. 2, 1410 (2011).
3. H. T. Kim, R. J. Green, J. Qian, and S. L. Anderson, J. Chem. Phys. 112, 5717 (2000).
4. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, Chem. Rev. 112, 4016 (2012).
5. J. Bonin and M. Robert, Photochem. Photobiol. 87, 1190 (2011).
6. B. A. Barry, J. Chen, J. Keough, D. Jenson, A. Offenbacher, and C. Pagba, J. Phys. Chem. Lett. 3, 543 (2012).
7. N. Mikami, A. Okabe, and I. Suzuki, J. Phys. Chem. 92, 1858 (1988).
8. D. Solgadi, C. Jouvet, and A. Tramer, J. Phys. Chem. 92, 3313 (1988).
9. J. A. Syage and J. Steadman, J. Phys. Chem. 96, 9606 (1992).
10. N. Mikami, S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993).
11. S. Sato, T. Ebata, and N. Mikami, Spectrochim. Acta, Part A 50, 1413 (1994).
12. M. F. Hineman, D. F. Kelley, and E. R. Bernstein, J. Chem. Phys. 99, 4533 (1993).
13. G. Gregoire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, and D. Solgadi, J. Phys. Chem. A 105, 5971 (2001).
14. O. David, C. Dedonder-Lardeux, and C. Jouvet, Int. Rev. Phys. Chem. 21, 499 (2002).
15. S. Ishiuchi, K. Daigoku, M. Saeki, M. Sakai, K. Hashimoto, and M. Fujii, J. Chem. Phys. 117, 7077 (2002).
16. M. Miyazaki, A. Kawanishi, I. Nielsen, I. Alata, S. Ishiuchi, C. Dedonder, C. Jouvet, and M. Fujii, J. Phys. Chem. A 117, 1522 (2013).
17. J. D. Rodriguez, M. G. Gonzalez, L. Rubio-Lago, and L. Banares, Phys. Chem. Chem. Phys. 16, 3757 (2014).
18. M. Y. Yi and S. Scheiner, Chem. Phys. Lett. 262, 567 (1996).
19. A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 105, 9275 (2001).
20. M. Sodupe, A. Oliva, and J. Bertran, J. Phys. Chem. A 101, 9142 (1997).
21. L. Pejov, Chem. Phys. 285, 177 (2002).
22. Y. X. Lu, J. W. Zou, Z. M. Jin, Y. H. Wang, H. X. Zhang, Y. J. Jiang, and Q. S. Yu, J. Phys. Chem. A 110, 9261 (2006).
23. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Chem. Phys. 131, 134308 (2009).
24. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J. Phys. Chem. A 109, 8074 (2005).
25. M. Rosenberg, M. P. Minitti, N. Rusteika, C. Z. Bisgaard, S. Deb, P. M. Weber, and T. I. Solling, J. Phys. Chem. A 114, 7021 (2010).
26. S. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, M. Fujii, O. Dopfer, and K. Muller-Dethlefs, Angew. Chem. Int. Ed. 44, 6149 (2005).
27. M. Fujii and O. Dopfer, Int. Rev. Phys. Chem. 31, 131 (2012).
28. S. I. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, O. Dopfer, K. Muller-Dethlefs, and M. Fujii, J. Chem. Phys. 127, 114307 (2007).
29. S. Ishiuchi, M. Miyazaki, M. Sakai, M. Fujii, M. Schmies, and O. Dopfer, Phys. Chem. Chem. Phys. 13, 2409 (2011).
30.See supplemental material at for detailed experimental and calculation procedures, supporting data, and fitting results showing individual components. [Supplementary Material]
31. G. Gregoire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, A. Peremans, and D. Solgadi, J. Phys. Chem. A 104, 9087 (2000).
32. G. N. R. Tripathi and R. H. Schuler, J. Chem. Phys. 81, 113 (1984).
33. J. G. Radziszewski, M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, and B. J. Mroz, J. Chem. Phys. 115, 9733 (2001).
34. O. Dopfer, G. Reiser, K. Mullerdethlefs, E. W. Schlag, and S. D. Colson, J. Chem. Phys. 101, 974 (1994).
35. S. Sato and N. Mikami, J. Phys. Chem. 100, 4765 (1996).
36. T. Sawamura, A. Fujii, S. Sato, T. Ebata, and N. Mikami, J. Phys. Chem. 100, 8131 (1996).
37. J. E. LeClaire, R. Anand, and P. M. Johnson, J. Chem. Phys. 106, 6785 (1997).
38. K. B. Bravaya, O. Kostko, M. Ahmed, and A. I. Krylov, Phys. Chem. Chem. Phys. 12, 2292 (2010).
39. M. Hachiya, Y. Matsuda, K. I. Suhara, N. Mikami, and A. Fujii, J. Chem. Phys. 129, 094306 (2008).
40. K. Ohta, Y. Matsuda, N. Mikami, and A. Fujii, J. Chem. Phys. 131, 184304 (2009).
41. A. Golan, K. B. Bravaya, R. Kudirka, O. Kostko, S. R. Leone, A. I. Krylov, and M. Ahmed, Nat. Chem. 4, 323 (2012).
42. F. J. Hernandez, M. C. Capello, A. N. Oldani, J. C. Ferrero, P. Maitre, and G. A. Pino, Phys. Chem. Chem. Phys. 14, 8945 (2012).
43. C. Kinz-Thompson and E. Conwell, J. Phys. Chem. Lett. 1, 1403 (2010).
44. S. Maeda, Y. Matsuda, S. Mizutani, A. Fujii, and K. Ohno, J. Phys. Chem. A 114, 11896 (2010).
45. A. K. Ghosh, P. Chatterjee, and T. Chakraborty, J. Chem. Phys. 141, 044303 (2014).
46.The pump pulses (∼7–10 μJ/pulse) were tightly focused by a f = 30 cm lens, while the probe pulses (∼6–9 μJ/pulse) were only loosely focused by adjusting a telescope placed upstream in the probe beam path.
47.Ionization of the PhOH-NH3 S1 state requires absorption of two probe photons, which leads to the conventional excitation-MPI detection for measuring S1-state dynamics. Note that, even if this contribution is not negligible, it does not interfere with the temporal behaviors observed in the early-time transients, because the PhOH-NH3 S1-state lifetimes in this energy region are at least a few hundred picoseconds.
48. C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
49. S. L. Anderson, L. Goodman, K. Kroghjespersen, A. G. Ozkabak, R. N. Zare, and C. F. Zheng, J. Chem. Phys. 82, 5329 (1985).
50. K. Fuke, H. Yoshiuchi, K. Kaya, Y. Achiba, K. Sato, and K. Kimura, Chem. Phys. Lett. 108, 179 (1984).
51. J. R. Roscioli, L. R. McCunn, and M. A. Johnson, Science 316, 249 (2007).
52. G. E. Douberly, A. M. Ricks, B. W. Ticknor, and M. A. Duncan, Phys. Chem. Chem. Phys. 10, 77 (2008).

Data & Media loading...


Article metrics loading...



Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd