Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/17/10.1063/1.4901329
1.
1. A. Douhal, F. Lahmani, and A. H. Zewail, Chem. Phys. 207, 477 (1996).
http://dx.doi.org/10.1016/0301-0104(96)00067-5
2.
2. S. Hammes-Schiffer, J. Phys. Chem. Lett. 2, 1410 (2011).
http://dx.doi.org/10.1021/jz200277p
3.
3. H. T. Kim, R. J. Green, J. Qian, and S. L. Anderson, J. Chem. Phys. 112, 5717 (2000).
http://dx.doi.org/10.1063/1.481146
4.
4. D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, and T. J. Meyer, Chem. Rev. 112, 4016 (2012).
http://dx.doi.org/10.1021/cr200177j
5.
5. J. Bonin and M. Robert, Photochem. Photobiol. 87, 1190 (2011).
http://dx.doi.org/10.1111/j.1751-1097.2011.00996.x
6.
6. B. A. Barry, J. Chen, J. Keough, D. Jenson, A. Offenbacher, and C. Pagba, J. Phys. Chem. Lett. 3, 543 (2012).
http://dx.doi.org/10.1021/jz2014117
7.
7. N. Mikami, A. Okabe, and I. Suzuki, J. Phys. Chem. 92, 1858 (1988).
http://dx.doi.org/10.1021/j100318a033
8.
8. D. Solgadi, C. Jouvet, and A. Tramer, J. Phys. Chem. 92, 3313 (1988).
http://dx.doi.org/10.1021/j100323a001
9.
9. J. A. Syage and J. Steadman, J. Phys. Chem. 96, 9606 (1992).
http://dx.doi.org/10.1021/j100203a009
10.
10. N. Mikami, S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993).
http://dx.doi.org/10.1016/0009-2614(93)90066-A
11.
11. S. Sato, T. Ebata, and N. Mikami, Spectrochim. Acta, Part A 50, 1413 (1994).
http://dx.doi.org/10.1016/0584-8539(94)E0051-B
12.
12. M. F. Hineman, D. F. Kelley, and E. R. Bernstein, J. Chem. Phys. 99, 4533 (1993).
http://dx.doi.org/10.1063/1.466053
13.
13. G. Gregoire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, and D. Solgadi, J. Phys. Chem. A 105, 5971 (2001).
http://dx.doi.org/10.1021/jp0046039
14.
14. O. David, C. Dedonder-Lardeux, and C. Jouvet, Int. Rev. Phys. Chem. 21, 499 (2002).
http://dx.doi.org/10.1080/01442350210164287
15.
15. S. Ishiuchi, K. Daigoku, M. Saeki, M. Sakai, K. Hashimoto, and M. Fujii, J. Chem. Phys. 117, 7077 (2002).
http://dx.doi.org/10.1063/1.1508103
16.
16. M. Miyazaki, A. Kawanishi, I. Nielsen, I. Alata, S. Ishiuchi, C. Dedonder, C. Jouvet, and M. Fujii, J. Phys. Chem. A 117, 1522 (2013).
http://dx.doi.org/10.1021/jp312074m
17.
17. J. D. Rodriguez, M. G. Gonzalez, L. Rubio-Lago, and L. Banares, Phys. Chem. Chem. Phys. 16, 3757 (2014).
http://dx.doi.org/10.1039/c3cp54362e
18.
18. M. Y. Yi and S. Scheiner, Chem. Phys. Lett. 262, 567 (1996).
http://dx.doi.org/10.1016/S0009-2614(96)01135-9
19.
19. A. L. Sobolewski and W. Domcke, J. Phys. Chem. A 105, 9275 (2001).
http://dx.doi.org/10.1021/jp011260l
20.
20. M. Sodupe, A. Oliva, and J. Bertran, J. Phys. Chem. A 101, 9142 (1997).
http://dx.doi.org/10.1021/jp970571m
21.
21. L. Pejov, Chem. Phys. 285, 177 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00715-2
22.
22. Y. X. Lu, J. W. Zou, Z. M. Jin, Y. H. Wang, H. X. Zhang, Y. J. Jiang, and Q. S. Yu, J. Phys. Chem. A 110, 9261 (2006).
http://dx.doi.org/10.1021/jp060790k
23.
23. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Chem. Phys. 131, 134308 (2009).
http://dx.doi.org/10.1063/1.3236813
24.
24. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J. Phys. Chem. A 109, 8074 (2005).
http://dx.doi.org/10.1021/jp0210935
25.
25. M. Rosenberg, M. P. Minitti, N. Rusteika, C. Z. Bisgaard, S. Deb, P. M. Weber, and T. I. Solling, J. Phys. Chem. A 114, 7021 (2010).
http://dx.doi.org/10.1021/jp102393g
26.
26. S. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, M. Fujii, O. Dopfer, and K. Muller-Dethlefs, Angew. Chem. Int. Ed. 44, 6149 (2005).
http://dx.doi.org/10.1002/anie.200501430
27.
27. M. Fujii and O. Dopfer, Int. Rev. Phys. Chem. 31, 131 (2012).
http://dx.doi.org/10.1080/0144235X.2012.656013
28.
28. S. I. Ishiuchi, M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, O. Dopfer, K. Muller-Dethlefs, and M. Fujii, J. Chem. Phys. 127, 114307 (2007).
http://dx.doi.org/10.1063/1.2775935
29.
29. S. Ishiuchi, M. Miyazaki, M. Sakai, M. Fujii, M. Schmies, and O. Dopfer, Phys. Chem. Chem. Phys. 13, 2409 (2011).
http://dx.doi.org/10.1039/c0cp01926g
30.
30.See supplemental material at http://dx.doi.org/10.1063/1.4901329 for detailed experimental and calculation procedures, supporting data, and fitting results showing individual components. [Supplementary Material]
31.
31. G. Gregoire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, A. Peremans, and D. Solgadi, J. Phys. Chem. A 104, 9087 (2000).
http://dx.doi.org/10.1021/jp001475f
32.
32. G. N. R. Tripathi and R. H. Schuler, J. Chem. Phys. 81, 113 (1984).
http://dx.doi.org/10.1063/1.447373
33.
33. J. G. Radziszewski, M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, and B. J. Mroz, J. Chem. Phys. 115, 9733 (2001).
http://dx.doi.org/10.1063/1.1415465
34.
34. O. Dopfer, G. Reiser, K. Mullerdethlefs, E. W. Schlag, and S. D. Colson, J. Chem. Phys. 101, 974 (1994).
http://dx.doi.org/10.1063/1.467752
35.
35. S. Sato and N. Mikami, J. Phys. Chem. 100, 4765 (1996).
http://dx.doi.org/10.1021/jp953115b
36.
36. T. Sawamura, A. Fujii, S. Sato, T. Ebata, and N. Mikami, J. Phys. Chem. 100, 8131 (1996).
http://dx.doi.org/10.1021/jp952622q
37.
37. J. E. LeClaire, R. Anand, and P. M. Johnson, J. Chem. Phys. 106, 6785 (1997).
http://dx.doi.org/10.1063/1.473677
38.
38. K. B. Bravaya, O. Kostko, M. Ahmed, and A. I. Krylov, Phys. Chem. Chem. Phys. 12, 2292 (2010).
http://dx.doi.org/10.1039/b919930f
39.
39. M. Hachiya, Y. Matsuda, K. I. Suhara, N. Mikami, and A. Fujii, J. Chem. Phys. 129, 094306 (2008).
http://dx.doi.org/10.1063/1.2971186
40.
40. K. Ohta, Y. Matsuda, N. Mikami, and A. Fujii, J. Chem. Phys. 131, 184304 (2009).
http://dx.doi.org/10.1063/1.3257686
41.
41. A. Golan, K. B. Bravaya, R. Kudirka, O. Kostko, S. R. Leone, A. I. Krylov, and M. Ahmed, Nat. Chem. 4, 323 (2012).
http://dx.doi.org/10.1038/nchem.1298
42.
42. F. J. Hernandez, M. C. Capello, A. N. Oldani, J. C. Ferrero, P. Maitre, and G. A. Pino, Phys. Chem. Chem. Phys. 14, 8945 (2012).
http://dx.doi.org/10.1039/c2cp23586b
43.
43. C. Kinz-Thompson and E. Conwell, J. Phys. Chem. Lett. 1, 1403 (2010).
http://dx.doi.org/10.1021/jz100214h
44.
44. S. Maeda, Y. Matsuda, S. Mizutani, A. Fujii, and K. Ohno, J. Phys. Chem. A 114, 11896 (2010).
http://dx.doi.org/10.1021/jp107034y
45.
45. A. K. Ghosh, P. Chatterjee, and T. Chakraborty, J. Chem. Phys. 141, 044303 (2014).
http://dx.doi.org/10.1063/1.4890501
46.
46.The pump pulses (∼7–10 μJ/pulse) were tightly focused by a f = 30 cm lens, while the probe pulses (∼6–9 μJ/pulse) were only loosely focused by adjusting a telescope placed upstream in the probe beam path.
47.
47.Ionization of the PhOH-NH3 S1 state requires absorption of two probe photons, which leads to the conventional excitation-MPI detection for measuring S1-state dynamics. Note that, even if this contribution is not negligible, it does not interfere with the temporal behaviors observed in the early-time transients, because the PhOH-NH3 S1-state lifetimes in this energy region are at least a few hundred picoseconds.
48.
48. C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
http://dx.doi.org/10.1021/jp992065y
49.
49. S. L. Anderson, L. Goodman, K. Kroghjespersen, A. G. Ozkabak, R. N. Zare, and C. F. Zheng, J. Chem. Phys. 82, 5329 (1985).
http://dx.doi.org/10.1063/1.448968
50.
50. K. Fuke, H. Yoshiuchi, K. Kaya, Y. Achiba, K. Sato, and K. Kimura, Chem. Phys. Lett. 108, 179 (1984).
http://dx.doi.org/10.1016/0009-2614(84)85716-4
51.
51. J. R. Roscioli, L. R. McCunn, and M. A. Johnson, Science 316, 249 (2007).
http://dx.doi.org/10.1126/science.1138962
52.
52. G. E. Douberly, A. M. Ricks, B. W. Ticknor, and M. A. Duncan, Phys. Chem. Chem. Phys. 10, 77 (2008).
http://dx.doi.org/10.1039/b716165d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/17/10.1063/1.4901329
Loading
/content/aip/journal/jcp/141/17/10.1063/1.4901329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/17/10.1063/1.4901329
2014-11-07
2016-09-29

Abstract

Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH]+ cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/17/1.4901329.html;jsessionid=7-UaDP8Aad7e4J1VT5j6j4Ln.x-aip-live-02?itemId=/content/aip/journal/jcp/141/17/10.1063/1.4901329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/17/10.1063/1.4901329&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/17/10.1063/1.4901329'
Right1,Right2,Right3,