Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/18/10.1063/1.4897265
1.
1. A. M. Dokter, S. Woutersen, and H. J. Bakker, Phys. Rev. Lett. 94, 178301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.178301
2.
2. M. D. Fayer, Acc. Chem. Res. 45, 3 (2012).
http://dx.doi.org/10.1021/ar2000088
3.
3. R. Costard, C. Greve, I. A. Heisler, and T. Elsaesser, J. Phys. Chem. Lett. 3, 3646 (2012).
http://dx.doi.org/10.1021/jz3018978
4.
4. D. E. Moilanen, N. E. Levinger, D. B. Spry, and M. D. Fayer, J. Am. Chem. Soc. 129, 14311 (2007).
http://dx.doi.org/10.1021/ja073977d
5.
5. A. M. Dokter, S. Woutersen, and H. J. Bakker, J. Chem. Phys. 126, 124507 (2007).
http://dx.doi.org/10.1063/1.2721527
6.
6. Y. R. Shen, The Principles of Nonlinear Optics (J. Wiley, 1984).
7.
7. Q. Du, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 72, 238 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.238
8.
8. G. L. Richmond, Chem. Rev. 102, 2693 (2002).
http://dx.doi.org/10.1021/cr0006876
9.
9. Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).
http://dx.doi.org/10.1021/cr040377d
10.
10. S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, Chem. Rev. 106, 1155 (2006).
http://dx.doi.org/10.1021/cr040361n
11.
11. S. Schrödle and G. L. Richmond, J. Am. Chem. Soc. 130, 5072 (2008).
http://dx.doi.org/10.1021/ja076664r
12.
12. K. C. Jena and D. K. Hore, J. Phys. Chem. C 113, 15364 (2009).
http://dx.doi.org/10.1021/jp905475m
13.
13. V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Phys. Rev. Lett. 94, 046102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.046102
14.
14. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 130, 204704 (2009).
http://dx.doi.org/10.1063/1.3135147
15.
15. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 132, 6867 (2010).
http://dx.doi.org/10.1021/ja910914g
16.
16. J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 132, 10656 (2010).
http://dx.doi.org/10.1021/ja104327t
17.
17. X. Chen, W. Hua, Z. Huang, and H. C. Allen, J. Am. Chem. Soc. 132, 11336 (2010).
http://dx.doi.org/10.1021/ja1048237
18.
18. S. Nihonyanagi, T. Ishiyama, T.-K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, J. Am. Chem. Soc. 133, 16875 (2011).
http://dx.doi.org/10.1021/ja2053754
19.
19. I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, Nature (London) 474, 192 (2011).
http://dx.doi.org/10.1038/nature10173
20.
20. J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 134, 7842 (2012).
http://dx.doi.org/10.1021/ja300658h
21.
21. J. A. McGuire and Y. R. Shen, Science 313, 1945 (2006).
http://dx.doi.org/10.1126/science.1131536
22.
22. A. Ghosh, M. Smits, J. Bredenbeck, and M. Bonn, J. Am. Chem. Soc. 129, 9608 (2007).
http://dx.doi.org/10.1021/ja073130h
23.
23. A. Eftekhari-Bafrooei and E. Borguet, J. Phys. Chem. Lett. 2, 1353 (2011).
http://dx.doi.org/10.1021/jz200194e
24.
24. S. Nihonyanagi, P. C. Singh, S. Yamaguchi, and T. Tahara, Bull. Chem. Soc. Jpn. 85, 758 (2012).
http://dx.doi.org/10.1246/bcsj.20120051
25.
25. P. C. Singh, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 137, 094706 (2012).
http://dx.doi.org/10.1063/1.4747828
26.
26. P. C. Singh, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 139, 161101 (2013).
http://dx.doi.org/10.1063/1.4826095
27.
27. G. T. Barnes, G. A. Lawrie, and K. Walker, Langmuir 14, 2148 (1998).
http://dx.doi.org/10.1021/la970201p
28.
28. M. Smits, A. Ghosh, M. Sterrer, M. Muller, and M. Bonn, Phys. Rev. Lett. 98, 098302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.098302
29.
29. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 136, 6155 (2014).
http://dx.doi.org/10.1021/ja412952y
30.
30. M. F. Kropman and H. J. Bakker, Science 291, 2118 (2001).
http://dx.doi.org/10.1126/science.1058190
31.
31. A. A. Bakulin, D. Cringus, P. A. Pieniazek, J. L. Skinner, T. L. C. Jansen, and M. S. Pshenichnikov, J. Phys. Chem. B 117, 15545 (2013).
http://dx.doi.org/10.1021/jp405853j
32.
32. L. Piatkowski and H. J. Bakker, J. Chem. Phys. 135, 214509 (2011).
http://dx.doi.org/10.1063/1.3664866
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4897265 for steady-state Imχ(2), Reχ(2), |χ(2)|2 spectra of the air/CTAB/water interface with and without salt. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/18/10.1063/1.4897265
Loading
/content/aip/journal/jcp/141/18/10.1063/1.4897265
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/18/10.1063/1.4897265
2014-10-10
2016-12-07

Abstract

To investigate the properties of water in the close vicinity of a positively charged surfactant/water interface, steady-state and femtosecond time-resolved interfacial vibrational spectra were measured in the presence of excess alkali halide salts. The steady-state Imχ(2) spectra show a drastic intensity decrease with excess salts, indicating that the thickness of the probed water layer is substantially reduced. Fluoride salts do not noticeably affect spectral features in the OH stretch region whereas the chloride and bromide salts induce significant blue shifts of the OH stretch frequency. Femtosecond time-resolved ΔImχ(2) spectra obtained with fluoride salts exhibit a very broad bleach even at 0 fs as observed without excess salts, while chloride and bromide salts give rise to a narrow spectral hole burning. These results indicate that the excess chloride and bromide ions strongly interact with interfacial water in the vicinity of the charged interface and it suppresses intramolecular coupling (i.e., Fermi resonance) that causes spectral broadening.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/18/1.4897265.html;jsessionid=pJ_PLEmUklgfAck38O7xABky.x-aip-live-06?itemId=/content/aip/journal/jcp/141/18/10.1063/1.4897265&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/18/10.1063/1.4897265&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4897265'
Right1,Right2,Right3,