Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/18/10.1063/1.4898356
1.
1. E. Whalley, J. Chem. Phys. 81, 4087 (1984).
http://dx.doi.org/10.1063/1.448153
2.
2. E. D. Murray and G. Galli, Phys. Rev. Lett. 108, 105502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.105502
3.
3. B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185701
4.
4. B. Santra, J. Klimeš, A. Tkatchenko, D. Alfè, B. Slater, A. Michaelides, R. Car, and M. Scheffler, J. Chem. Phys. 139, 154702 (2013).
http://dx.doi.org/10.1063/1.4824481
5.
5. M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, and F. R. Manby, J. Chem. Phys. 139, 114101 (2013).
http://dx.doi.org/10.1063/1.4820906
6.
6. B. Slater and D. Quigley, Nature Mater. 13, 670 (2014).
http://dx.doi.org/10.1038/nmat4017
7.
7. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
8.
8. J. M. Pedulla, K. Kim, and K. D. Jordan, Chem. Phys. Lett. 291, 78 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00582-X
9.
9. S. L. Price, Acc. Chem. Res. 42, 117 (2009).
http://dx.doi.org/10.1021/ar800147t
10.
10. S. L. Price, Chem. Soc. Rev. 43, 2098 (2014).
http://dx.doi.org/10.1039/c3cs60279f
11.
11. S. N. Timasheff, Annu. Rev. Biophys. Biomol. Struct. 22, 67 (1993).
http://dx.doi.org/10.1146/annurev.bb.22.060193.000435
12.
12. A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, and L. Bocquet, Nature (London) 494, 455 (2013).
http://dx.doi.org/10.1038/nature11876
13.
13. W. Lei, D. Portehault, D. Liu, S. Qin, and Y. Chen, Nat. Commun. 4, 1777 (2013).
http://dx.doi.org/10.1038/ncomms2818
14.
14. A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, and D. Golberg, ACS Nano 5, 6507 (2011).
http://dx.doi.org/10.1021/nn201838w
15.
15. F. Taherian, V. Marcon, N. F. A. van der Vegt, and F. Leroy, Langmuir 29, 1457 (2013).
http://dx.doi.org/10.1021/la304645w
16.
16. J. Shim, C. H. Lui, T. Y. Ko, Y.-J. Yu, P. Kim, T. F. Heinz, and S. Ryu, Nano Lett. 12, 648 (2012).
http://dx.doi.org/10.1021/nl2034317
17.
17. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, L. Balicas et al., Nature Mater. 9, 430 (2010).
http://dx.doi.org/10.1038/nmat2711
18.
18. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg et al., Nature Nanotech. 8, 119 (2013).
http://dx.doi.org/10.1038/nnano.2012.256
19.
19. Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, and S. Z. Qiao, Angew. Chem. 125, 3192 (2013).
http://dx.doi.org/10.1002/ange.201209548
20.
20. Y. Ding, M. Iannuzzi, and J. Hutter, J. Phys. Chem. C 115, 13685 (2011).
http://dx.doi.org/10.1021/jp110235y
21.
21. L. B. Boinovich, A. M. Emelyanenko, A. S. Pashinin, C. H. Lee, J. Drelich, and Y. K. Yap, Langmuir 28, 1206 (2012).
http://dx.doi.org/10.1021/la204429z
22.
22. M. C. Gordillo and J. Martí, Phys. Rev. E 84, 011602 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011602
23.
23. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. A. Koratkar, Nature Mater. 11, 217 (2012).
http://dx.doi.org/10.1038/nmat3228
24.
24. Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade et al., Nature Mater. 12, 925 (2013).
http://dx.doi.org/10.1038/nmat3709
25.
25. G. R. Jenness, O. Karalti, and K. D. Jordan, Phys. Chem. Chem. Phys. 12, 6375 (2010).
http://dx.doi.org/10.1039/c000988a
26.
26. I. Hamada, Phys. Rev. B 86, 195436 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.195436
27.
27. J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse, and E. Wang, Phys. Rev. B 84, 033402 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033402
28.
28. E. Voloshina, D. Usvyat, M. Schütz, Y. Dedkov, and B. Paulus, Phys. Chem. Chem. Phys. 13, 12041 (2011).
http://dx.doi.org/10.1039/c1cp20609e
29.
29. M. Rubeš, P. Nachtigall, J. Vondrášek, and O. Bludský, J. Phys. Chem. C 113, 8412 (2009).
http://dx.doi.org/10.1021/jp901410m
30.
30. D. Feller and K. D. Jordan, J. Phys. Chem. A 104, 9971 (2000).
http://dx.doi.org/10.1021/jp001766o
31.
31. S. Xu, S. Irle, D. G. Musaev, and M. C. Lin, J. Phys. Chem. A 109, 9563 (2005).
http://dx.doi.org/10.1021/jp053234j
32.
32. I. W. Sudiarta and D. J. W. Geldart, J. Phys. Chem. A 110, 10501 (2006).
http://dx.doi.org/10.1021/jp060554+
33.
33. Y. Zhao, O. Tishchenko, and D. G. Truhlar, J. Phys. Chem. B 109, 19046 (2005).
http://dx.doi.org/10.1021/jp0534434
34.
34. S. K. Min, E. C. Lee, H. M. Lee, D. Y. Kim, D. Kim, and K. S. Kim, J. Comput. Chem. 29, 1208 (2008).
http://dx.doi.org/10.1002/jcc.20880
35.
35. D. Feller, J. Phys. Chem. A 103, 7558 (1999).
http://dx.doi.org/10.1021/jp991932w
36.
36. J. Ma, D. Alfè, A. Michaelides, and E. Wang, J. Chem. Phys. 130, 154303 (2009).
http://dx.doi.org/10.1063/1.3111035
37.
37. J. Wu, H. Yan, H. Chen, G. Dai, and A. Zhong, Comput. Theor. Chem. 984, 51 (2012).
http://dx.doi.org/10.1016/j.comptc.2012.01.007
38.
38. V. Marcon, O. A. von Lilienfeld, and D. Andrienko, J. Chem. Phys. 127, 064305 (2007).
http://dx.doi.org/10.1063/1.2752811
39.
39. T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.235502
40.
40. T. Björkman, J. Chem. Phys. 141, 074708 (2014).
http://dx.doi.org/10.1063/1.4893329
41.
41. J. Antony and S. Grimme, Phys. Chem. Chem. Phys. 8, 5287 (2006).
http://dx.doi.org/10.1039/b612585a
42.
42. G. Graziano, J. Klimeš, F. Fernandez-Alonso, and A. Michaelides, J. Phys. Condens. Matter 24, 424216 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424216
43.
43. J. Carrasco, J. Klimeš, and A. Michaelides, J. Chem. Phys. 138, 024708 (2013).
http://dx.doi.org/10.1063/1.4773901
44.
44. T. Thonhauser, A. Puzder, and D. C. Langreth, J. Chem. Phys. 124, 164106 (2006).
http://dx.doi.org/10.1063/1.2189230
45.
45. Y. Kanai and J. C. Grossman, Phys. Rev. A 80, 032504 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.032504
46.
46. B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 131, 124509 (2009).
http://dx.doi.org/10.1063/1.3236840
47.
47. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
48.
48. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
49.
49. J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
http://dx.doi.org/10.1063/1.4754130
50.
50. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
http://dx.doi.org/10.1126/science.1158722
51.
51. A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
52.
52. K. Burke, J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
53.
53. L. Shulenburger and T. R. Mattsson, Phys. Rev. B 88, 245117 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245117
54.
54. F.-F. Wang, M. J. Deible, and K. D. Jordan, J. Phys. Chem. A 117, 7606 (2013).
http://dx.doi.org/10.1021/jp404541c
55.
55. M. Dubecký, P. Jurečka, R. Derian, P. Hobza, M. Otyepka, and L. Mitas, J. Chem. Theory Comput. 9, 4287 (2013).
http://dx.doi.org/10.1021/ct4006739
56.
56. T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
57.
57. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
58.
58. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
http://dx.doi.org/10.1063/1.464303
59.
59.We have also investigated the magnitude of basis set superposition error by applying Boys and Bernardi's counterpoise correction,115 but the correction was not included in the CBS extrapolation (see the supplementary material108 for more details).
60.
60. L. A. Burns, M. S. Marshall, and C. D. Sherrill, J. Chem. Theory Comput. 10, 49 (2014).
http://dx.doi.org/10.1021/ct400149j
61.
61. D. G. Truhlar, Chem. Phys. Lett. 294, 45 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00866-5
62.
62. A. Halkier, W. Klopper, T. Helgaker, P. Jørgensen, and P. R. Taylor, J. Chem. Phys. 111, 9157 (1999).
http://dx.doi.org/10.1063/1.479830
63.
63. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
64.
64. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Chem. Phys. Lett. 302, 437 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00179-7
65.
65. D. Feller and K. A. Peterson, J. Chem. Phys. 110, 8384 (1999).
http://dx.doi.org/10.1063/1.478747
66.
66. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision D.02, Gaussian, Inc., Wallingford, CT, 2004.
67.
67. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
68.
68. J. Trail and R. Needs, J. Chem. Phys. 122, 174109 (2005).
http://dx.doi.org/10.1063/1.1888569
69.
69. J. Trail and R. Needs, J. Chem. Phys. 122, 014112 (2005).
http://dx.doi.org/10.1063/1.1829049
70.
70. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
71.
71. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
72.
72. D. Alfè and M. J. Gillan, Phys. Rev. B 70, 161101(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161101
73.
73. R. Needs, M. Towler, N. Drummond, and P. L. Ríos, Casino version 2.13, 2010.
74.
74. L. Mitas, E. L. Shirley, and D. M. Ceperley, J. Chem. Phys. 95, 3467 (1991).
http://dx.doi.org/10.1063/1.460849
75.
75. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
76.
76. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
77.
77. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
78.
78. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
79.
79. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
80.
80. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
81.
81. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
82.
82. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
83.
83. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
84.
84. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
85.
85. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
86.
86. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
87.
87. S. Grimme, WIREs Comput. Mol. Sci. 1, 211 (2011).
http://dx.doi.org/10.1002/wcms.30
88.
88. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
89.
89. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
90.
90. A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
91.
91.As the TS and TS+SCS schemes are implemented in the later versions of VASP, VASP.5.3.3 was used for these particular calculations.
92.
92. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
93.
93. J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/2/022201
94.
94. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
95.
95. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
96.
96. V. R. Cooper, Phys. Rev. B 81, 161104 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161104
97.
97. K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035412
98.
98. I. Hamada, Phys. Rev. B 89, 121103 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.121103
99.
99. O. A. Vydrov and T. Van Voorhis, Phys. Rev. Lett. 103, 063004 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.063004
100.
100. O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 132, 164113 (2010).
http://dx.doi.org/10.1063/1.3398840
101.
101. R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87, 041108 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041108
102.
102. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235149
103.
103. T. Björkman, Phys. Rev. B 86, 165109 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165109
104.
104.A 10 Å long cubic cell was used with standard PBE PAW potentials and a 500 eV cut-off energy. Convergence criteria of 10−6 eV for the wavefunction optimization and 0.01 eV/Å for the forces were used.
105.
105. C.-S. Liu, G. Pilania, C. Wang, and R. Ramprasad, J. Phys. Chem. A 116, 9347 (2012).
http://dx.doi.org/10.1021/jp3005844
106.
106. T. Bučko, J. Hafner, S. Lebègue, and J. G. Angyán, J. Phys. Chem. A 114, 11814 (2010).
http://dx.doi.org/10.1021/jp106469x
107.
107. D. Tunega, T. Bučko, and A. Zaoui, J. Chem. Phys. 137, 114105 (2012).
http://dx.doi.org/10.1063/1.4752196
108.
108.See supplemental material at http://dx.doi.org/10.1063/1.4898356 for geometrical details of the binding configurations, interaction energies from optimised structures, molecular orbital diagrams, and a list of interaction energies from the quantum chemical calculations. [Supplementary Material]
109.
109. A. Benali, L. Shulenburger, N. A. Romero, J. Kim, and O. A. von Lilienfeld, J. Chem. Theory Comput. 10, 3417 (2014).
http://dx.doi.org/10.1021/ct5003225
110.
110.The LDA TWs give rise to total energies that are only ∼20–30 meV lower than total energies obtained from PBE TWs, whereby the total energies are in the region of ∼1500 eV.
111.
111.HF-SAPT calculations were performed using Molpro 2010116 and an aug-cc-pVDZ basis set for the C3 and C5 complexes.
112.
112. O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
113.
113. Y. Wang, S. de Gironcoli, N. S. Hush, and J. R. Reimers, J. Am. Chem. Soc. 129, 10402 (2007).
http://dx.doi.org/10.1021/ja0712367
114.
114. C. Di Valentin, G. Pacchioni, and A. Selloni, Phys. Rev. Lett. 97, 166803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.166803
115.
115. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
http://dx.doi.org/10.1080/00268977000101561
116.
116. H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/18/10.1063/1.4898356
Loading
/content/aip/journal/jcp/141/18/10.1063/1.4898356
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/18/10.1063/1.4898356
2014-10-22
2016-09-26

Abstract

Density functional theory (DFT) studies of weakly interacting complexes have recently focused on the importance of van der Waals dispersion forces, whereas the role of exchange has received far less attention. Here, by exploiting the subtle binding between water and a boron and nitrogen doped benzene derivative (1,2-azaborine) we show how exact exchange can alter the binding conformation within a complex. Benchmark values have been calculated for three orientations of the water monomer on 1,2-azaborine from explicitly correlated quantum chemical methods, and we have also used diffusion quantum Monte Carlo. For a host of popular DFT exchange-correlation functionals we show that the lack of exact exchange leads to the wrong lowest energy orientation of water on 1,2-azaborine. As such, we suggest that a high proportion of exact exchange and the associated improvement in the electronic structure could be needed for the accurate prediction of physisorption sites on doped surfaces and in complex organic molecules. Meanwhile to predict correct absolute interaction energies an accurate description of exchange needs to be augmented by dispersion inclusive functionals, and certain non-local van der Waals functionals (optB88- and optB86b-vdW) perform very well for absolute interaction energies. Through a comparison with water on benzene and borazine (BNH) we show that these results could have implications for the interaction of water with doped graphene surfaces, and suggest a possible way of tuning the interaction energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/18/1.4898356.html;jsessionid=GZnl2GKa3K9Y0P-gtvZ-F8mp.x-aip-live-03?itemId=/content/aip/journal/jcp/141/18/10.1063/1.4898356&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/18/10.1063/1.4898356&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4898356'
Right1,Right2,Right3,