Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/18/10.1063/1.4901109
1.
1. V. Bonačić-Koutecký, J. Pittner, M. Boiron, and P. Fantucci, J. Chem. Phys. 110, 3876 (1999).
http://dx.doi.org/10.1063/1.478242
2.
2. J. I. Martínez and E. M. Fernández, Eur. Phys. J. D 52, 199 (2009).
http://dx.doi.org/10.1140/epjd/e2008-00244-6
3.
3. J. Loreau, H. R. Sadeghpour, and A. Dalgarno, J. Chem. Phys. 138, 084301 (2013).
http://dx.doi.org/10.1063/1.4790586
4.
4. D. W. Silverstein and L. Jensen, J. Chem. Phys. 132, 194302 (2010).
http://dx.doi.org/10.1063/1.3429883
5.
5. M. Käll, Nat. Mater. 11, 570 (2012).
http://dx.doi.org/10.1038/nmat3365
6.
6. F. Rabilloud, J. Phys. Chem. A 117, 4267 (2013).
http://dx.doi.org/10.1021/jp3124154
7.
7. C. J. Heard and R. L. Johnston, Phys. Chem. Chem. Phys. 116, 21039 (2014).
http://dx.doi.org/10.1039/C3CP55507K
8.
8. B. Anak, M. Bencharif, and F. Rabilloud, RSC Adv. 4, 13001 (2014).
http://dx.doi.org/10.1039/c3ra47244b
9.
9. E. B. Guidez and C. M. Aikens, Nanoscale 6, 11512 (2014).
http://dx.doi.org/10.1039/C4NR02225D
10.
10. K. Yabana and G. Bertsch, Phys. Rev. A 60, 3809 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.3809
11.
11. V. Bonačić-Koutecký, V. Veyret, and R. Mitrić, J. Chem. Phys. 115, 10450 (2001).
http://dx.doi.org/10.1063/1.1415077
12.
12. J. Idrobo, S. Ögüt, and J. Jellinek, Phys. Rev. B 72, 085445 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085445
13.
13. M.-J. Huang and J. D. Watts, Phys. Chem. Chem. Phys. 14, 6849 (2012).
http://dx.doi.org/10.1039/c2cp23744j
14.
14. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, and C. Félix, J . Chem. Phys. 129, 194108 (2008).
http://dx.doi.org/10.1063/1.3013557
15.
15. K. Clemenger, Phys. Rev. B 32, 1359 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.1359
16.
16. S. Fedrigo, W. Harbich, and J. Buttet, Phys. Rev. B 47, 10706 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.10706
17.
17. A. Terasaki, T. Majima, C. Kasai, and T. Kondow, Eur. Phys. J. D 52, 43 (2009).
http://dx.doi.org/10.1140/epjd/e2008-00274-0
18.
18. J. Tiggesbäumker and L. Köller, Chem. Phys. Lett. 190, 42 (1992).
http://dx.doi.org/10.1016/0009-2614(92)86099-4
19.
19. J. Tiggesbäumker and L. Köller, Phys. Rev. A 48, R1749 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.R1749
20.
20. B. A. Collings, I. L. Athanassenas, D. M. Rayner, and P. A. Hackett, Chem. Phys. Lett. 227, 490 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00850-7
21.
21. A. Terasaki, S. Minemoto, M. Iseda, and T. Kondow, Eur. Phys. J. D 9, 163 (1999).
http://dx.doi.org/10.1007/s100530050419
22.
22. D. Schooss, S. Gilb, J. Kaller, M. M. Kappes, F. Furche, A. Köhn, K. May, and R. Ahlrichs, J. Chem. Phys. 113, 5361 (2000).
http://dx.doi.org/10.1063/1.1290028
23.
23. K. Egashira, C. Bartels, T. Kondow, and A. Terasaki, Eur. Phys. J. D 63, 183 (2011).
http://dx.doi.org/10.1140/epjd/e2011-10525-6
24.
24. A. Shayeghi, R. L. Johnston, and R. Schäfer, Phys. Chem. Chem. Phys. 15, 19715 (2013).
http://dx.doi.org/10.1039/c3cp52160e
25.
25. W. Harbich, S. Fedrigo, and J. Buttet, Z. Phys. D Atom. Mol. Cl. 26, 138 (1993).
http://dx.doi.org/10.1007/BF01429124
26.
26. T. Ito, K. Tobita, M. Arakawa, and A. Terasaki, poster presented at the 17th International Symposium on Small Particles and Inorganic Clusters, ISSPIC XVII, Fukuoka, Japan, 2014.
27.
27. P. Weis, T. Bierweiler, S. Gilb, and M. M. Kappes, Chem. Phys. Lett. 355, 355 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00277-4
28.
28. A. Shvartsburg and M. Jarrold, Chem. Phys. Lett. 261, 86 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00941-4
29.
29. A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem. 113, 2019 (2013).
http://dx.doi.org/10.1002/qua.24438
30.
30. R. L. Johnston, Dalt. Trans. 2003, 4193.
http://dx.doi.org/10.1039/b305686d
31.
31. S. Heiles, A. J. Logsdail, R. Schäfer, and R. L. Johnston, Nanoscale 4, 1109 (2012).
http://dx.doi.org/10.1039/c1nr11053e
32.
32. A. Shayeghi, D. Götz, J. B. A. Davis, R. Schäfer, and R. L. Johnston, “Pool-BCGA: A parallelised generation-free genetic algorithm for the ab-initio global optimisation of nanoalloy clusters,” Phys. Chem. Chem. Phys. (submitted).
33.
33. M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009).
http://dx.doi.org/10.1063/1.3073302
34.
34. J. V. Koppen, M. Hapka, M. M. Szcześniak, and G. Chalasinski, J. Chem. Phys. 137, 114302 (2012).
http://dx.doi.org/10.1063/1.4752433
35.
35. A. Shayeghi, C. J. Heard, R. L. Johnston, and R. Schäfer, J. Chem. Phys. 140, 054312 (2014).
http://dx.doi.org/10.1063/1.4863443
36.
36. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4901109 for atomic coordinates of the considered isomers. [Supplementary Material]
38.
38. A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B 41, 1227 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.1227
39.
39. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
40.
40. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, Comp. Phys. Comm. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
41.
41. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
42.
42. C. M. Isborn, N. Luehr, I. S. Ufimtsev, and T. J. Martínez, J. Chem. Theory Comput. 7, 1814 (2011).
http://dx.doi.org/10.1021/ct200030k
43.
43. J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.8800
43.J. P. Perdew and Y. Wang, see also the name correction in Phys. Rev. B 40, 3399 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3399
44.
44. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
45.
45. Y. Zhao and D. G. Truhlar, J . Chem. Phys. 125, 194101 (2006).
http://dx.doi.org/10.1063/1.2370993
46.
46. M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, and M. F. Jarrold, J. Phys. Chem. 100, 16082 (1996).
http://dx.doi.org/10.1021/jp961623v
47.
47. T. Kar, A. B. Sannigrahi, and D. C. Mukherjee, Theochem 153, 93 (1987).
http://dx.doi.org/10.1016/0166-1280(87)85007-8
48.
48. J. D. Thompson, J. D. Xidos, T. M. Sonbuchner, C. J. Cramer, and D. G. Truhlar, PhysChemComm 5, 117 (2002).
http://dx.doi.org/10.1039/b206369g
49.
49. P. Weis, Int. J. Mass Spectrom. 245, 1 (2005).
http://dx.doi.org/10.1016/j.ijms.2005.06.005
50.
50. H.-Ch. Weissker and C. Mottet, Phys. Rev. B 84, 165443 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165443
51.
51.See http://www.bear.bham.ac.uk/bluebear for a description of the BlueBEAR HPC facility.
52.
52. H.-Ch. Weissker, R. L. Whetten, and X.-L. Lozano, Phys. Chem. Chem. Phys. 16, 12495 (2014).
http://dx.doi.org/10.1039/c4cp01277a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/18/10.1063/1.4901109
Loading
/content/aip/journal/jcp/141/18/10.1063/1.4901109
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/18/10.1063/1.4901109
2014-11-13
2016-09-29

Abstract

The present study is focused on the optical properties of the cluster in the photon energy range ℏω = 1.9–4.4 eV. Absorption spectra are recorded by longitudinal molecular beam depletion spectroscopy and compared to optical response calculations using time-dependent density functional theory. Several cluster isomers obtained by the new pool-based parallel implementation of the Birmingham Cluster Genetic Algorithm, coupled with density functional theory, are used in excited state calculations. The experimental observations, together with additional simulations of ion mobilities for the several geometries found within this work using different models, clearly identify the ground state isomer of to be composed of two orthogonal interpenetrating pentagonal bipyramids, having overall symmetry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/18/1.4901109.html;jsessionid=fiO_mkoEn7wR4rfJglHv-BNL.x-aip-live-02?itemId=/content/aip/journal/jcp/141/18/10.1063/1.4901109&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/18/10.1063/1.4901109&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901109'
Right1,Right2,Right3,