Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/18/10.1063/1.4901214
1.
1. Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011).
http://dx.doi.org/10.1063/1.3579995
2.
2. Y. Wang and J. M. Bowman, J. Chem. Phys. 136, 144113 (2012).
http://dx.doi.org/10.1063/1.3700165
3.
3. H. Torii, J. Phys. Chem. A 110, 9469 (2006).
http://dx.doi.org/10.1021/jp062033s
4.
4. J. L. Skinner, B. M. Auer, and Y.-S. Lin, Advances in Chemical Physics (Wiley-Blackwell, 2009), pp. 59103.
5.
5. S. M. Gruenbaum, C. J. Tainter, L. Shi, Y. Ni, and J. L. Skinner, J. Chem. Theory Comput. 9, 3109 (2013).
http://dx.doi.org/10.1021/ct400292q
6.
6. W. H. Miller, Proc. Natl. Acad. Sci. U.S.A. 102, 6660 (2005).
http://dx.doi.org/10.1073/pnas.0408043102
7.
7. J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006).
http://dx.doi.org/10.1063/1.2395941
8.
8. J. Liu, W. H. Miller, F. Paesani, W. Zhang, and D. A. Case, J. Chem. Phys. 131, 164509 (2009).
http://dx.doi.org/10.1063/1.3254372
9.
9. J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
http://dx.doi.org/10.1063/1.467176
10.
10. S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
http://dx.doi.org/10.1063/1.479515
11.
11. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
http://dx.doi.org/10.1063/1.1777575
12.
12. S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Annu. Rev. Phys. Chem. 64, 387 (2013).
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
13.
13. M. Rossi, M. Ceriotti, and D. E. Manolopoulos, J. Chem. Phys. 140, 234116 (2014).
http://dx.doi.org/10.1063/1.4883861
14.
14. F. Paesani and G. A. Voth, J. Chem. Phys. 132, 014105 (2010).
http://dx.doi.org/10.1063/1.3291212
15.
15. H. Ahlborn, X. Ji, B. Space, and P. B. Moore, J. Chem. Phys. 111, 10622 (1999).
http://dx.doi.org/10.1063/1.480415
16.
16. S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
http://dx.doi.org/10.1063/1.2968555
17.
17. A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys. 130, 194510 (2009).
http://dx.doi.org/10.1063/1.3125009
18.
18. S. D. Ivanov, A. Witt, M. Shiga, and D. Marx, J. Chem. Phys. 132, 031101 (2010).
http://dx.doi.org/10.1063/1.3290958
19.
19. S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
http://dx.doi.org/10.1063/1.3167790
20.
20. S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014).
http://dx.doi.org/10.1063/1.4870717
21.
21. B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
http://dx.doi.org/10.1063/1.2357599
22.
22. T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013).
http://dx.doi.org/10.1063/1.4792697
23.
23. M. Ceriotti, J. More, and D. E. Manolopoulos, Comput. Phys. Commun. 185, 1019 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.10.027
24.
24. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
25.
25. M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010).
http://dx.doi.org/10.1063/1.3489925
26.
26. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
http://dx.doi.org/10.1063/1.2408420
27.
27. A. Pérez, M. E. Tuckerman, and M. H. Müser, J. Chem. Phys. 130, 184105 (2009).
http://dx.doi.org/10.1063/1.3126950
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4901214 for computational details and a discussion of their impact on the results of the different methods. [Supplementary Material]
29.
29. S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phys. 107, 10458 (1997).
http://dx.doi.org/10.1063/1.474210
30.
30. S. Carter, J. M. Bowman, and N. C. Handy, Theor. Chem. Acc. (Theor. Chim. Acta) 100, 191 (1998).
http://dx.doi.org/10.1007/s002140050379
31.
31. J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).
http://dx.doi.org/10.1080/0144235031000124163
32.
32. H. Liu, Y. Wang, and J. M. Bowman, “Local-monomer calculations of the intramolecular IR spectra of the cage and prism isomers of HOD(D2O)5 and HOD and D2O ice Ih,” J. Phys. Chem. B (published online 2014).
http://dx.doi.org/10.1021/jp5061182
33.
33. H. Liu, Y. Wang, and J. M. Bowman, J. Am. Chem. Soc. 136, 5888 (2014).
http://dx.doi.org/10.1021/ja501986t
34.
34. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).
35.
35. J. R. Schmidt, S. A. Corcelli, and J. L. Skinner, J. Chem. Phys. 123, 044513 (2005).
http://dx.doi.org/10.1063/1.1961472
36.
36. H. Bakker and J. Skinner, Chem. Rev. 110, 1498 (2010).
http://dx.doi.org/10.1021/cr9001879
37.
37. Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011).
http://dx.doi.org/10.1063/1.3554905
38.
38. F. Paesani, S. S. Xantheas, and G. A. Voth, J. Phys. Chem. B 113, 13118 (2009).
http://dx.doi.org/10.1021/jp907648y
39.
39. J.-H. Choi and M. Cho, J. Chem. Phys. 138, 174108 (2013).
http://dx.doi.org/10.1063/1.4802991
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/18/10.1063/1.4901214
Loading
/content/aip/journal/jcp/141/18/10.1063/1.4901214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/18/10.1063/1.4901214
2014-11-10
2016-09-27

Abstract

Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks DO doped with HOD and pure HO at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm−1. Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/18/1.4901214.html;jsessionid=mHK5lmlh4Fvme4IBwTZLK0F0.x-aip-live-03?itemId=/content/aip/journal/jcp/141/18/10.1063/1.4901214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/18/10.1063/1.4901214&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901214'
Right1,Right2,Right3,