Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Wang and J. M. Bowman, J. Chem. Phys. 134, 154510 (2011).
2. Y. Wang and J. M. Bowman, J. Chem. Phys. 136, 144113 (2012).
3. H. Torii, J. Phys. Chem. A 110, 9469 (2006).
4. J. L. Skinner, B. M. Auer, and Y.-S. Lin, Advances in Chemical Physics (Wiley-Blackwell, 2009), pp. 59103.
5. S. M. Gruenbaum, C. J. Tainter, L. Shi, Y. Ni, and J. L. Skinner, J. Chem. Theory Comput. 9, 3109 (2013).
6. W. H. Miller, Proc. Natl. Acad. Sci. U.S.A. 102, 6660 (2005).
7. J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006).
8. J. Liu, W. H. Miller, F. Paesani, W. Zhang, and D. A. Case, J. Chem. Phys. 131, 164509 (2009).
9. J. Cao and G. A. Voth, J. Chem. Phys. 100, 5106 (1994).
10. S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
11. I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
12. S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Annu. Rev. Phys. Chem. 64, 387 (2013).
13. M. Rossi, M. Ceriotti, and D. E. Manolopoulos, J. Chem. Phys. 140, 234116 (2014).
14. F. Paesani and G. A. Voth, J. Chem. Phys. 132, 014105 (2010).
15. H. Ahlborn, X. Ji, B. Space, and P. B. Moore, J. Chem. Phys. 111, 10622 (1999).
16. S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys. 129, 074501 (2008).
17. A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys. 130, 194510 (2009).
18. S. D. Ivanov, A. Witt, M. Shiga, and D. Marx, J. Chem. Phys. 132, 031101 (2010).
19. S. Habershon, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009).
20. S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014).
21. B. J. Braams and D. E. Manolopoulos, J. Chem. Phys. 125, 124105 (2006).
22. T. J. H. Hele and S. C. Althorpe, J. Chem. Phys. 138, 084108 (2013).
23. M. Ceriotti, J. More, and D. E. Manolopoulos, Comput. Phys. Commun. 185, 1019 (2014).
24. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
25. M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010).
26. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
27. A. Pérez, M. E. Tuckerman, and M. H. Müser, J. Chem. Phys. 130, 184105 (2009).
28.See supplementary material at for computational details and a discussion of their impact on the results of the different methods. [Supplementary Material]
29. S. Carter, S. J. Culik, and J. M. Bowman, J. Chem. Phys. 107, 10458 (1997).
30. S. Carter, J. M. Bowman, and N. C. Handy, Theor. Chem. Acc. (Theor. Chim. Acta) 100, 191 (1998).
31. J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).
32. H. Liu, Y. Wang, and J. M. Bowman, “Local-monomer calculations of the intramolecular IR spectra of the cage and prism isomers of HOD(D2O)5 and HOD and D2O ice Ih,” J. Phys. Chem. B (published online 2014).
33. H. Liu, Y. Wang, and J. M. Bowman, J. Am. Chem. Soc. 136, 5888 (2014).
34. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999).
35. J. R. Schmidt, S. A. Corcelli, and J. L. Skinner, J. Chem. Phys. 123, 044513 (2005).
36. H. Bakker and J. Skinner, Chem. Rev. 110, 1498 (2010).
37. Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011).
38. F. Paesani, S. S. Xantheas, and G. A. Voth, J. Phys. Chem. B 113, 13118 (2009).
39. J.-H. Choi and M. Cho, J. Chem. Phys. 138, 174108 (2013).

Data & Media loading...


Article metrics loading...



Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks DO doped with HOD and pure HO at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm−1. Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd