Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/18/10.1063/1.4901722
1.
1. J. C. Cuevas and E. Scheer, Molecular Electronics (World Scientific, Hackensack, NJ, USA, 2010).
2.
2. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6207
3.
3. Y. Imry and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.S306
4.
4. M. Paulsson and M. Brandbyge, Phys. Rev. B 76, 115117 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115117
5.
5. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
http://dx.doi.org/10.1016/0009-2614(74)85031-1
6.
6. J. G. Kushmerick, J. Naciri, J. C. Yang, and R. Shashidhar, Nano Lett. 3, 897 (2003).
http://dx.doi.org/10.1021/nl034201n
7.
7. P. Pomorski, L. Pastewka, C. Roland, H. Guo, and J. Wang, Phys. Rev. B 69, 115418 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115418
8.
8. J. He, F. Chen, J. Li, O. F. Sankey, Y. Terazono, C. Herrero, D. Gust, T. A. Moore, A. L. Moore, and S. M. Lindsay, J. Am. Chem. Soc. 127, 1384 (2005).
http://dx.doi.org/10.1021/ja043279i
9.
9. N. E. Jackson, H. M. Heitzer, B. M. Savoie, M. G. Reuter, T. J. Marks, and M. A. Ratner, Isr. J. Chem. 54, 454 (2014).
http://dx.doi.org/10.1002/ijch.201400021
10.
10. C. Joachim, J. K. Gimzewski, and H. Tang, Phys. Rev. B 58, 16407 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.16407
11.
11. M. Magoga and C. Joachim, Phys. Rev. B 59, 16011 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.16011
12.
12. I. Duchemin, N. Renaud, and C. Joachim, Chem. Phys. Lett. 452, 269 (2008).
http://dx.doi.org/10.1016/j.cplett.2007.12.056
13.
13. H. Vázquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. S. Hybertsen, Nature Nanotech. 7, 663 (2012).
http://dx.doi.org/10.1038/nnano.2012.147
14.
14. L.-Y. Hsu, E. Y. Li, and H. Rabitz, Nano Lett. 13, 5020 (2013).
http://dx.doi.org/10.1021/nl401340c
15.
15. S. Ami, M. Hliwa, and C. Joachim, Nanotechnology 14, 283 (2003).
http://dx.doi.org/10.1088/0957-4484/14/2/335
16.
16. R. Baer and D. Neuhauser, J. Am. Chem. Soc. 124, 4200 (2002).
http://dx.doi.org/10.1021/ja016605s
17.
17. K. K. Saha, B. K. Nikolić, V. Meunier, W. Lu, and J. Bernholc, Phys. Rev. Lett. 105, 236803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.236803
18.
18. D. M. Cardamone, C. A. Stafford, and S. Mazumdar, Nano Lett. 6, 2422 (2006).
http://dx.doi.org/10.1021/nl0608442
19.
19. C. A. Stafford, D. M. Cardamone, and S. Mazumdar, Nanotechnology 18, 424014 (2007).
http://dx.doi.org/10.1088/0957-4484/18/42/424014
20.
20. R. Stadler, M. Forshaw, and C. Joachim, Nanotechnology 14, 138 (2003).
http://dx.doi.org/10.1088/0957-4484/14/2/307
21.
21. R. Baer and D. Neuhauser, Chem. Phys. 281, 353 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00570-0
22.
22. D. Q. Andrews, G. C. Solomon, R. P. Van Duyne, and M. A. Ratner, J. Am. Chem. Soc. 130, 17309 (2008).
http://dx.doi.org/10.1021/ja804399q
23.
23. E. Maggio, G. C. Solomon, and A. Troisi, ACS Nano 8, 409 (2014).
http://dx.doi.org/10.1021/nn4045886
24.
24. M. J. Shephard, M. N. Paddon-Row, and K. D. Jordan, J. Am. Chem. Soc. 116, 5328 (1994).
http://dx.doi.org/10.1021/ja00091a043
25.
25. M. Kemp, A. Roitberg, V. Mujica, T. Wanta, and M. A. Ratner, J. Phys. Chem. 100, 8349 (1996).
http://dx.doi.org/10.1021/jp952431n
26.
26. D. Rai, O. Hod, and A. Nitzan, J. Phys. Chem. C 114, 20583 (2010).
http://dx.doi.org/10.1021/jp105030d
27.
27. R. Härtle, M. Butzin, O. Rubio-Pons, and M. Thoss, Phys. Rev. Lett. 107, 046802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.046802
28.
28. V. Kaliginedi, P. Moreno-García, H. Valkenier, W. Hong, V. M. García-Suárez, P. Buiter, J. L. H. Otten, J. C. Hummelen, C. J. Lambert, and T. Wandlowski, J. Am. Chem. Soc. 134, 5262 (2012).
http://dx.doi.org/10.1021/ja211555x
29.
29. R. J. Nichols and S. J. Higgins, Nature Nanotech. 7, 281 (2012).
http://dx.doi.org/10.1038/nnano.2012.46
30.
30. L.-Y. Hsu and H. Rabitz, Phys. Rev. Lett. 109, 186801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.186801
31.
31. V. Rabache, J. Chaste, P. Petit, M. L. Della Rocca, P. Martin, J.-C. Lacroix, R. L. McCreery, and P. Lafarge, J. Am. Chem. Soc. 135, 10218 (2013).
http://dx.doi.org/10.1021/ja403577u
32.
32. J. E. Szekely and T. Seideman, J. Chem. Phys. 141, 044103 (2014).
http://dx.doi.org/10.1063/1.4890344
33.
33. V. M. García-Suárez, C. J. Lambert, D. Z. Manrique, and T. Wandlowski, Nanotechnology 25, 205402 (2014).
http://dx.doi.org/10.1088/0957-4484/25/20/205402
34.
34. L.-Y. Hsu, D. Xie, and H. Rabitz, J. Chem. Phys. 141, 124703 (2014).
http://dx.doi.org/10.1063/1.4895963
35.
35. M. Mayor, H. B. Weber, J. Reichert, M. Elbing, C. von Hänisch, D. Beckmann, and M. Fischer, Angew. Chem. Int. Ed. 42, 5834 (2003).
http://dx.doi.org/10.1002/anie.200352179
36.
36. D. Walter, D. Neuhauser, and R. Baer, Chem. Phys. 299, 139 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.12.015
37.
37. T. Markussen, J. Schiötz, and K. S. Thygesen, J. Chem. Phys. 132, 224104 (2010).
http://dx.doi.org/10.1063/1.3451265
38.
38. G. C. Solomon, D. Q. Andrews, and M. A. Ratner, in Charge and Exciton Transport through Molecular Wires, edited by L. D. A. Siebbeles and F. C. Grozema (Wiley-VCH, 2011), pp. 1959.
39.
39. P. W. Fowler, B. T. Pickup, T. Z. Todorova, M. Borg, and I. Sciriha, J. Chem. Phys. 140, 054115 (2014).
http://dx.doi.org/10.1063/1.4863559
40.
40. K. Yoshizawa, T. Tada, and A. Staykov, J. Am. Chem. Soc. 130, 9406 (2008).
http://dx.doi.org/10.1021/ja800638t
41.
41. M. Taniguchi, M. Tsutsui, R. Mogi, T. Sugawara, Y. Tsuji, K. Yoshizawa, and T. Kawai, J. Am. Chem. Soc. 133, 11426 (2011).
http://dx.doi.org/10.1021/ja2033926
42.
42. D. Mayou, Y. Zhou, and M. Ernzerhof, J. Phys. Chem. C 117, 7870 (2013).
http://dx.doi.org/10.1021/jp3125389
43.
43. D. Q. Andrews, G. C. Solomon, R. H. Goldsmith, T. Hansen, M. R. Wasielewski, R. P. V. Duyne, and M. A. Ratner, J. Phys. Chem. C 112, 16991 (2008).
http://dx.doi.org/10.1021/jp805588m
44.
44. J. Yi, G. Cuniberti, and M. Porto, Eur. Phys. J. B 33, 221 (2003).
http://dx.doi.org/10.1140/epjb/e2003-00160-1
45.
45. B. T. Pickup and P. W. Fowler, Chem. Phys. Lett. 459, 198 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.05.062
46.
46. P. W. Fowler, B. T. Pickup, T. Z. Todorova, and W. Myrvold, J. Chem. Phys. 131, 044104 (2009).
http://dx.doi.org/10.1063/1.3182849
47.
47. T. Markussen, R. Stadler, and K. S. Thygesen, Nano Lett. 10, 4260 (2010).
http://dx.doi.org/10.1021/nl101688a
48.
48. G. C. Solomon, D. Q. Andrews, T. Hansen, R. H. Goldsmith, M. R. Wasielewski, R. P. Van Duyne, and M. A. Ratner, J. Chem. Phys. 129, 054701 (2008).
http://dx.doi.org/10.1063/1.2958275
49.
49. T. Hansen, G. C. Solomon, D. Q. Andrews, and M. A. Ratner, J. Chem. Phys. 131, 194704 (2009).
http://dx.doi.org/10.1063/1.3259548
50.
50. S. K. Maiti, Phys. Lett. A 366, 114 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.02.041
51.
51. A. A. Kocherzhenko, F. C. Grozema, and L. D. A. Siebbeles, J. Phys. Chem. C 114, 7973 (2010).
http://dx.doi.org/10.1021/jp9117216
52.
52. J. Koga, Y. Tsuji, and K. Yoshizawa, J. Phys. Chem. C 116, 20607 (2012).
http://dx.doi.org/10.1021/jp3068156
53.
53. S. Chen, Y. Zhang, S. Koo, H. Tian, C. Yam, G. Chen, and M. A. Ratner, J. Phys. Chem. Lett. 5, 2748 (2014).
http://dx.doi.org/10.1021/jz5007143
54.
54. M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rocheleau, J. Chem. Theory Comput. 2, 1291 (2006).
http://dx.doi.org/10.1021/ct600087c
55.
55. G. C. Solomon, D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, ChemPhysChem 10, 257 (2009).
http://dx.doi.org/10.1002/cphc.200800591
56.
56. G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. A. Ratner, Nature Chem. 2, 223 (2010).
http://dx.doi.org/10.1038/nchem.546
57.
57. P. Sautet and C. Joachim, Chem. Phys. Lett. 153, 511 (1988).
http://dx.doi.org/10.1016/0009-2614(88)85252-7
58.
58. S.-H. Ke, W. Yang, and H. U. Baranger, Nano Lett. 8, 3257 (2008).
http://dx.doi.org/10.1021/nl8016175
59.
59. P. Sautet and C. Joachim, Chem. Phys. 135, 99 (1989).
http://dx.doi.org/10.1016/0301-0104(89)87009-0
60.
60. G. C. Solomon, D. Q. Andrews, R. H. Goldsmith, T. Hansen, M. R. Wasielewski, R. P. Van Duyne, and M. A. Ratner, J. Am. Chem. Soc. 130, 17301 (2008).
http://dx.doi.org/10.1021/ja8044053
61.
61. G. Géranton, C. Seiler, A. Bagrets, L. Venkataraman, and F. Evers, J. Chem. Phys. 139, 234701 (2013).
http://dx.doi.org/10.1063/1.4840535
62.
62. L.-Y. Hsu and B.-Y. Jin, Chem. Phys. 355, 177 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.12.015
63.
63. C. R. Arroyo, S. Tarkuc, R. Frisenda, J. S. Seldenthuis, C. H. M. Woerde, R. Eelkema, F. C. Grozema, and H. S. J. van der Zant, Angew. Chem. Int. Ed. 52, 3152 (2013).
http://dx.doi.org/10.1002/anie.201207667
64.
64. J. Rincón, K. Hallberg, A. A. Aligia, and S. Ramasesha, Phys. Rev. Lett. 103, 266807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.266807
65.
65. K. Yoshizawa, Acc. Chem. Res. 45, 1612 (2012).
http://dx.doi.org/10.1021/ar300075f
66.
66. S. V. Aradhya, J. S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, M. L. Steigerwald, C. Nuckolls, and L. Venkataraman, Nano Lett. 12, 1643 (2012).
http://dx.doi.org/10.1021/nl2045815
67.
67. Y. Okuno and T. Ozaki, J. Phys. Chem. C 117, 100 (2013).
http://dx.doi.org/10.1021/jp309455n
68.
68. R. Stadler, K. S. Thygesen, and K. W. Jacobsen, Nanotechnology 16, S155 (2005).
http://dx.doi.org/10.1088/0957-4484/16/5/004
69.
69. R. Stadler, Phys. Rev. B 80, 125401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125401
70.
70. J. Xia, B. Capozzi, S. Wei, M. Strange, A. Batra, J. R. Moreno, R. J. Amir, E. Amir, G. C. Solomon, L. Venkataraman, and L. M. Campos, Nano Lett. 14, 2941 (2014).
http://dx.doi.org/10.1021/nl5010702
71.
71. M. Ernzerhof, J. Chem. Phys. 127, 204709 (2007).
http://dx.doi.org/10.1063/1.2804867
72.
72. F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007).
http://dx.doi.org/10.1063/1.2715932
73.
73. J. P. Bergfield, M. A. Solis, and C. A. Stafford, ACS Nano 4, 5314 (2010).
http://dx.doi.org/10.1021/nn100490g
74.
74. G. C. Solomon, J. P. Bergfield, C. A. Stafford, and M. A. Ratner, Beilstein J. Nanotechnol. 2, 862 (2011).
http://dx.doi.org/10.3762/bjnano.2.95
75.
75. M. Ernzerhof, M. Zhuang, and P. Rocheleau, J. Chem. Phys. 123, 134704 (2005).
http://dx.doi.org/10.1063/1.2049249
76.
76. T. Markussen, R. Stadler, and K. S. Thygesen, Phys. Chem. Chem. Phys. 13, 14311 (2011).
http://dx.doi.org/10.1039/c1cp20924h
77.
77. P. W. Fowler, B. T. Pickup, T. Z. Todorova, and T. Pisanski, J. Chem. Phys. 130, 174708 (2009).
http://dx.doi.org/10.1063/1.3124828
78.
78. D. A. Lovey and R. H. Romero, Chem. Phys. Lett. 530, 86 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.01.068
79.
79. M. Ernzerhof, J. Chem. Phys. 140, 114708 (2014).
http://dx.doi.org/10.1063/1.4868544
80.
80. R. Collepardo-Guevara, D. Walter, D. Neuhauser, and R. Baer, Chem. Phys. Lett. 393, 367 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.042
81.
81. D. Nozaki, H. Sevinçli, S. M. Avdoshenko, R. Gutiérrez, and G. Cuniberti, Phys. Chem. Chem. Phys. 15, 13951 (2013).
http://dx.doi.org/10.1039/c3cp44578j
82.
82. T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Phys. Rev. B 74, 193306 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.193306
83.
83. R. Stadler and T. Markussen, J. Chem. Phys. 135, 154109 (2011).
http://dx.doi.org/10.1063/1.3653790
84.
84. J. P. Bergfield and C. A. Stafford, Nano Lett. 9, 3072 (2009).
http://dx.doi.org/10.1021/nl901554s
85.
85. C. M. Guédon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. van der Molen, Nature Nanotech. 7, 305 (2012).
http://dx.doi.org/10.1038/nnano.2012.37
86.
86. M. Portais and C. Joachim, Chem. Phys. Lett. 592, 272 (2014).
http://dx.doi.org/10.1016/j.cplett.2013.12.048
87.
87. H. Valkenier, C. M. Guédon, T. Markussen, K. S. Thygesen, S. J. van der Molen, and J. C. Hummelen, Phys. Chem. Chem. Phys. 16, 653 (2014).
http://dx.doi.org/10.1039/c3cp53866d
88.
88. W. Hong, H. Valkenier, G. Mészáros, D. Z. Manrique, A. Mishchenko, A. Putz, P. M. García, C. J. Lambert, J. C. Hummelen, and T. Wandlowski, Beilstein J. Nanotechnol. 2, 699 (2011).
http://dx.doi.org/10.3762/bjnano.2.76
89.
89. T. Markussen and K. S. Thygesen, Phys. Rev. B 89, 085420 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.085420
90.
90. J. Lykkebo, A. Gagliardi, A. Pecchia, and G. C. Solomon, ACS Nano 7, 9183 (2013).
http://dx.doi.org/10.1021/nn4037915
91.
91. J. Lykkebo, A. Gagliardi, A. Pecchia, and G. C. Solomon, J. Chem. Phys. 141, 124119 (2014).
http://dx.doi.org/10.1063/1.4896234
92.
92. R. Ferradás, V. M. García-Suárez, and J. Ferrer, J. Phys.: Condens. Matter 25, 325501 (2013).
http://dx.doi.org/10.1088/0953-8984/25/32/325501
93.
93. T. Markussen, J. Chem. Phys. 139, 244101 (2013).
http://dx.doi.org/10.1063/1.4849178
94.
94. J. P. Bergfield, G. C. Solomon, C. A. Stafford, and M. A. Ratner, Nano Lett. 11, 2759 (2011).
http://dx.doi.org/10.1021/nl201042m
95.
95. K. G. L. Pedersen, M. Strange, M. Leijnse, P. Hedegård, G. C. Solomon, and J. Paaske, Phys. Rev. B 90, 125413 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125413
96.
96. S. Ballmann, R. Härtle, P. B. Coto, M. Elbing, M. Mayor, M. R. Bryce, M. Thoss, and H. B. Weber, Phys. Rev. Lett. 109, 056801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.056801
97.
97. C. Patoux, C. Coudret, J.-P. Launay, C. Joachim, and A. Gourdon, Inorg. Chem. 36, 5037 (1997).
http://dx.doi.org/10.1021/ic970013m
98.
98. V. Marvaud, J.-P. Launay, and C. Joachim, Chem. Phys. 177, 23 (1993).
http://dx.doi.org/10.1016/0301-0104(93)80172-6
99.
99. Jacobellis v. Ohio, 378 U.S. 184 (1964).
100.
100. G. Strang, Linear Algebra and Its Applications, 4th ed. (Thomson Brooks/Cole, Belmont, CA, USA, 2006).
101.
101. G. Strang and T. Nguyen, SIAM Rev. 46, 637 (2004).
http://dx.doi.org/10.1137/S0036144503434381
102.
102. D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.6851
103.
103. E. N. Economou, Green's Functions in Quantum Physics, 3rd ed. (Springer-Verlag, Heidelberg, Germany, 2006).
104.
104. J. Wang and H. Guo, Phys. Rev. B 79, 045119 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.045119
105.
105. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
106.
106. R. Li, S. Hou, J. Zhang, Z. Qian, Z. Shen, and X. Zhao, J. Chem. Phys. 125, 194113 (2006).
http://dx.doi.org/10.1063/1.2388272
107.
107. R. Li, J. Zhang, S. Hou, Z. Qian, Z. Shen, X. Zhao, and Z. Xue, Chem. Phys. 336, 127 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.06.011
108.
108. A. Dhar and D. Sen, Phys. Rev. B 73, 085119 (2006);
http://dx.doi.org/10.1103/PhysRevB.73.085119
108.G. Stefanucci, Phys. Rev. B 75, 195115 (2007);
http://dx.doi.org/10.1103/PhysRevB.75.195115
108.E. Khosravi, S. Kurth, G. Stefanucci, and E. K. U. Gross, Appl. Phys. A 93, 355 (2008).
http://dx.doi.org/10.1007/s00339-008-4864-9
109.
109. W. Porod, Z.-A. Shao, and C. T. Lent, Appl. Phys. Lett. 61, 1350 (1992).
http://dx.doi.org/10.1063/1.107588
110.
110. W. Porod, Z.-A. Shao, and C. T. Lent, Phys. Rev. B 48, 8495 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.8495
111.
111. R. C. Bowen, W. R. Frensley, G. Klimeck, and R. K. Lake, Phys. Rev. B 52, 2754 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.2754
112.
112. H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2358
113.
113. Y. S. Joe, A. M. Satanin, and G. Klimeck, Phys. Rev. B 72, 115310 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.115310
114.
114. M. G. Reuter and R. J. Harrison, J. Chem. Phys. 139, 114104 (2013).
http://dx.doi.org/10.1063/1.4821176
115.
115. C. J. O. Verzijl, J. S. Seldenthuis, and J. M. Thijssen, J. Chem. Phys. 138, 094102 (2013).
http://dx.doi.org/10.1063/1.4793259
116.
116. G. L. Thompson and R. L. Weil, Lin. Alg. Appl. 5, 207 (1972);
http://dx.doi.org/10.1016/0024-3795(72)90003-1
116.G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (The Johns Hopkins University Press, Baltimore, MD, USA, 1996).
117.
117. G. Boutry, M. Elad, G. H. Golub, and P. Milanfar, SIAM J. Matrix Anal. Appl. 27, 582 (2005);
http://dx.doi.org/10.1137/S0895479803428795
117.D. Chu and G. H. Golub, SIAM J. Matrix Anal. Appl. 28, 770 (2006).
http://dx.doi.org/10.1137/050628258
118.
118. K. Gustafson, Antieigenvalue Analysis (World Scientific, Hackensack, NJ, USA, 2012).
119.
119. M. A. Caprio, Comput. Phys. Commun. 171, 107 (2005).
http://dx.doi.org/10.1016/j.cpc.2005.04.010
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/18/10.1063/1.4901722
Loading
/content/aip/journal/jcp/141/18/10.1063/1.4901722
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/18/10.1063/1.4901722
2014-11-13
2016-10-01

Abstract

Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule–electrode couplings, and we demonstrate its utility with several examples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/18/1.4901722.html;jsessionid=mieAGXMYmQVe_Rjb9U-Zb0bF.x-aip-live-06?itemId=/content/aip/journal/jcp/141/18/10.1063/1.4901722&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/18/10.1063/1.4901722&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901722'
Right1,Right2,Right3,