Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/141/20/10.1063/1.4902361
1.
1. R. W. Zwanzig, “High-temperature equation of state by a perturbation method. I. Nonpolar gases,” J. Chem. Phys. 22, 1420 (1954).
http://dx.doi.org/10.1063/1.1740409
2.
2. H. Liu, A. E. Mark, and W. F. van Gunsteren, “Estimating the relative free energy of different molecular states with respect to a single reference state,” J. Phys. Chem. 100, 9485 (1996).
http://dx.doi.org/10.1021/jp9605212
3.
3. J. Chen, W. Im, and C. L. Brooks III, “Balancing solvation and intramolecular interactions: Toward a consistent generalized Born force field,” J. Am. Chem. Soc. 128, 3728 (2006).
http://dx.doi.org/10.1021/ja057216r
4.
4. C. D. Christ and W. F. van Gunsteren, “Multiple free energies from a single simulation: Extending enveloping distribution sampling to nonoverlapping phase-space distributions,” J. Chem. Phys. 128, 174112-1 (2008).
http://dx.doi.org/10.1063/1.2913050
5.
5. J. G. Kirkwood, “Quantum statistics of almost classical assemblies,” Phys. Rev. 44, 31 (1933).
http://dx.doi.org/10.1103/PhysRev.44.31
6.
6. J. G. Kirkwood, “Quantum statistics of almost classical assemblies,” Phys. Rev. 45, 116 (1934).
http://dx.doi.org/10.1103/PhysRev.45.116
7.
7. J. G. Kirkwood, “Statistical mechanics of fluid mixtures,” J. Chem. Phys. 3, 300 (1935).
http://dx.doi.org/10.1063/1.1749657
8.
8. R. H. Swendsen and J.-S. Wang, “Replica Monte Carlo simulation of spin-glasses,” Phys. Rev. Lett. 57, 2607 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2607
9.
9. B. Tidor, “Simulated annealing on free energy surfaces by a combined molecular dynamics and Monte Carlo approach,” J. Phys. Chem. 97, 1069 (1993).
http://dx.doi.org/10.1021/j100107a015
10.
10. X. Kong and C. L. Brooks III, “λ-dynamics: A new approach to free energy calculations,” J. Chem. Phys. 105, 2414 (1996).
http://dx.doi.org/10.1063/1.472109
11.
11. N. S. Bieler, R. Häuselmann, and P. H. Hünenberger, “Local elevation umbrella sampling applied to the calculation of alchemical free-energy changes via λ-dynamics: The λ-LEUS scheme,” J. Chem. Theory Comput. 10, 3006 (2014).
http://dx.doi.org/10.1021/ct5002686
12.
12. J. L. Knight and C. L. Brooks III, “Applying efficient implicit nongeometric constraints in alchemical free energy simulations,” J. Comput. Chem. 32, 3423 (2011).
http://dx.doi.org/10.1002/jcc.21921
13.
13. J. L. Knight and C. L. Brooks III, “Multisite λ-dynamics for simulated structure-activity relationship studies,” J. Chem. Theory Comput. 7, 2728 (2011).
http://dx.doi.org/10.1021/ct200444f
14.
14. S. Donnini, F. Tegeler, G. Groenhof, and H. Grubmüller, “Constant pH molecular dynamics in explicit solvent with λ-dynamics,” J. Chem. Theory Comput. 7, 1962 (2011).
http://dx.doi.org/10.1021/ct200061r
15.
15. P. Wu, X. Hu, and W. Yang, “λ-metadynamics approach to compute absolute solvation free energy,” J. Phys. Chem. Lett. 2, 2099 (2011).
http://dx.doi.org/10.1021/jz200808x
16.
16. L. Zheng and W. Yang, “Practically efficient and robust free energy calculations: Double-integration orthogonal space tempering,” J. Chem. Theory Comput. 8, 810 (2012).
http://dx.doi.org/10.1021/ct200726v
17.
17. S. Donnini, F. Tegeler, G. Groenhof, and H. Grubmüller, “Correction to constant pH molecular dynamics in explicit solvent with λ-dynamics,” J. Chem. Theory Comput. 9, 3261 (2013).
http://dx.doi.org/10.1021/ct400439g
18.
18. H. S. Hansen and P. H. Hünenberger, “Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water,” J. Comput. Chem. 31, 1 (2010).
http://dx.doi.org/10.1002/jcc.21253
19.
19. A. Laio and M. Parrinello, “Escaping free-energy minima,” Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).
http://dx.doi.org/10.1073/pnas.202427399
20.
20. G. M. Torrie and J. P. Valleau, “Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling,” J. Comput. Phys. 23, 187 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90121-8
21.
21. G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-Hoover chains: The canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635 (1992).
http://dx.doi.org/10.1063/1.463940
22.
22. D. Steiner, C. Oostenbrink, F. Diederich, M. Zürcher, and W. F. van Gunsteren, “Calculation of binding free energies of inhibitors to plasmepsin II,” J. Comput. Chem. 32, 1801 (2011).
http://dx.doi.org/10.1002/jcc.21761
23.
23. D. A. Pearlman and P. A. Kollman, “The lag between the Hamiltonian and the system configuration in free energy perturbation calculations,” J. Chem. Phys 91, 7831 (1989).
http://dx.doi.org/10.1063/1.457251
24.
24. H. S. Hansen and P. H. Hünenberger, “Ball-and-stick local elevation umbrella sampling: Molecular simulations involving enhanced sampling within conformational or alchemical subspaces of low internal dimensionalities, minimal irrelevant volume and problem-adapted geometries,” J. Chem. Theory Comput. 6, 2622 (2010).
http://dx.doi.org/10.1021/ct1003065
25.
25. T. P. Straatsma and H. J. C. Berendsen, “Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations,” J. Chem. Phys. 89, 5876 (1988).
http://dx.doi.org/10.1063/1.455539
26.
26. J. Hermans, “Simple analysis of noise and hysteresis in (slow-growth) free energy simulations,” J. Phys. Chem. 95, 9029 (1991).
http://dx.doi.org/10.1021/j100176a002
27.
27. C. Habermann and F. Kindermann, “Multidimensional spline interpolation: Theory and applications,” Comput. Econ. 30, 153 (2007).
http://dx.doi.org/10.1007/s10614-007-9092-4
28.
28. V. Babin, C. Roland, and C. Sagui, “Adaptively biased molecular dynamics for free energy calculations,” J. Chem. Phys. 128, 134101-1 (2008).
http://dx.doi.org/10.1063/1.2844595
29.
29. G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins University Press, London, 1996).
30.
30. S. Gorard, “Revisiting a 90-year old debate: The advantages of the mean absolute deviatio,” Brit. J. Educ. Stud. 53, 417 (2005).
http://dx.doi.org/10.1111/j.1467-8527.2005.00304.x
31.
31. E. Darve and A. Pohorille, “Calculating free energies using average force,” J. Chem. Phys. 115, 9169 (2001).
http://dx.doi.org/10.1063/1.1410978
32.
32. I. Dabo, B. Kozinsky, N. E. Singh-Miller, and N. Marzari, “Electrostatics in periodic boundary conditions and real-space corrections,” Phys. Rev. B 77, 115139-1 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115139
http://aip.metastore.ingenta.com/content/aip/journal/jcp/141/20/10.1063/1.4902361
Loading
/content/aip/journal/jcp/141/20/10.1063/1.4902361
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/141/20/10.1063/1.4902361
2014-11-25
2016-12-07

Abstract

In a recent article [Bieler et al. , J. Chem. Theory Comput.10, 3006–3022 (2014)], we introduced a combination of the λ-dynamics (λD) approach for calculating alchemical free-energy differences and of the local-elevation umbrella-sampling (LEUS) memory-based biasing method to enhance the sampling along the alchemical coordinate. The combined scheme, referred to as λ-LEUS, was applied to the perturbation of hydroquinone to benzene in water as a test system, and found to represent an improvement over thermodynamic integration (TI) in terms of sampling efficiency at equivalent accuracy. However, the preoptimization of the biasing potential required in the λ-LEUS method requires “filling up” all the basins in the potential of mean force. This introduces a non-productive pre-sampling time that is system-dependent, and generally exceeds the corresponding equilibration time in a TI calculation. In this letter, a remedy is proposed to this problem, termed the slow growth memory guessing (SGMG) approach. Instead of initializing the biasing potential to zero at the start of the preoptimization, an approximate potential of mean force is estimated from a short slow growth calculation, and its negative used to construct the initial memory. Considering the same test system as in the preceding article, it is shown that of the application of SGMG in λ-LEUS permits to reduce the preoptimization time by about a factor of four.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/141/20/1.4902361.html;jsessionid=QgDednfYuwsiTyJeH02T0zlv.x-aip-live-03?itemId=/content/aip/journal/jcp/141/20/10.1063/1.4902361&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/141/20/10.1063/1.4902361&pageURL=http://scitation.aip.org/content/aip/journal/jcp/141/20/10.1063/1.4902361'
Right1,Right2,Right3,