Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Lingwood and K. Simons, Science 327, 4650 (2010).
2. I. V. Ionova, V. A. Livshits, and D. Marsh, Biophys. J. 102, 18561865 (2012).
3. J. R. Silvius, Biochim. Biophys. Acta 1610, 174183 (2003).
4. K. J. Fritzsching, J. Kim, and G. P. Holland, Biochim. Biophys. Acta 1828, 18891898 (2013).
5. I. Levental, M. Grzybek, and K. Simons, Biochemistry 49, 63056316 (2010).
6. T. T. Mills, S. Tristram-Nagle, F. A. Heberle, N. F. Morales, J. Zhao, J. Wu, G. E. S. Toombes, J. F. Nagle, and G. W. Feigenson, Biophys. J. 95, 682690 (2008).
7. A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001).
8. J. R. Klauder and P. W. Anderson, Phys. Rev. 125, 912932 (1962).
9. K. M. Salikhov, S. A. Dzuba, and A. M. Raitsimring, J. Magn. Reson. 42, 255276 (1981).
10. R. I. Samoilova, A. M. Raitsimring, and Y. D. Tsvetkov, Radiat. Phys. Chem. 15, 553559 (1980).
11. B. Rakvin, N. Maltar-Strmecki, and K. Nakagawa, Radiat. Measur. 42, 14691474 (2007).
12. M. Marrale, M. Brai, A. Barbon, and M. Brustolon, Radiat. Res. 171, 349359 (2009).
13. D. A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S. A. Dzuba, and L. Sportelli, J. Phys. Chem. B. 108, 45014507 (2004).
14. R. Dastvan, B. E. Bode, M. P. R. Karuppiah, A. Marko, S. Lyubenova, H. Schwalbe, and T. F. Prisner, J. Phys. Chem. B 114, 1350713516 (2010).
15. S. K. Hoffmann, S. Lijewski, J. Goslar, and V. A. Ulanov, J. Magn. Reson. 202, 1423 (2010).
16. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B 68, 193207 (2003).
17. A. Ferretti, M. Fanciulli, A. Ponti, and A. Schweiger, Phys. Rev. B 72, 235201 (2005).
18. A. Grammenos, A. Mouithys-Mickalad, P. H. Guelluy, M. Lismont, G. Piel, and M. Hoebeke, Biochem. Biophys. Res. Commun. 398, 350 (2010).
19. J. A. Williams, C. D. Wassall, M. D. Kemple, and S. R. Wassall, J. Membr. Biol. 246, 689696 (2013).
20. F. M. Megli, E. Conte, and T. Ishikawa, Biochim. Biophys. Acta 1808, 22672274 (2011).
21. E. D. Walter, K. B. Sebby, R. J. Usselman, D. J. Singel, and M. J. Cloninger, J. Phys. Chem. B 109, 2153221538 (2005).
22. N. P. Isaev and S. A. Dzuba, J. Phys. Chem. B. 112, 1328513291 (2008).

Data & Media loading...


Article metrics loading...



Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3β-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl--glycero-3-phosphocholine and 1,2-dioleoyl--glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of “instantaneous diffusion” in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd